Jeehoon Yu, Chanil Park, Byeongjin Kim, Sohyeon Sung, Hyun Kim, Jaeho Lee, Yong Seok Kim, Youngjae Yoo
{"title":"利用空心氧化钇球增强被动辐射冷却薄膜的 FDTD 仿真启示。","authors":"Jeehoon Yu, Chanil Park, Byeongjin Kim, Sohyeon Sung, Hyun Kim, Jaeho Lee, Yong Seok Kim, Youngjae Yoo","doi":"10.1002/marc.202400770","DOIUrl":null,"url":null,"abstract":"<p><p>Passive daytime radiative cooling (PDRC) presents a promising avenue for efficient thermal management without relying on electrical power. In this study, the potential of integrating Hollow Yttrium-Oxide Spheres (HYSs) within a Polydimethylsiloxane (PDMS) matrix to enhance PDRC is investigated. Through a combination of experimental characterization and computational analysis, the optical properties and radiative cooling performance of PDMS films embedded with HYSs are evaluated. These results demonstrate that HYSs significantly improve both solar reflectivity and long-wave infrared (LWIR) emissivity of the PDMS matrix. Finite-Difference Time-Domain (FDTD) simulations confirm the scattering efficiency of HYSs across various wavelength ranges, highlighting their effectiveness as additives for enhancing the radiative properties of passive cooling materials. Experimental validation reveals enhanced reflectivity and emissivity of PDMS films with embedded HYSs, resulting in superior cooling performance compared to non-HYS counterparts. Overall, this study underscores the potential of HYS-infused PDMS films as a promising solution for passive radiative cooling, with broad applicability in diverse domains requiring efficient thermal management solutions. Additionally, these research insights pave the way for establishing an AI database for passive radiative cooling research, offering new avenues for further exploration and application in this field.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Passive Radiative Cooling Films with Hollow Yttrium-Oxide Spheres Insights from FDTD Simulation.\",\"authors\":\"Jeehoon Yu, Chanil Park, Byeongjin Kim, Sohyeon Sung, Hyun Kim, Jaeho Lee, Yong Seok Kim, Youngjae Yoo\",\"doi\":\"10.1002/marc.202400770\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Passive daytime radiative cooling (PDRC) presents a promising avenue for efficient thermal management without relying on electrical power. In this study, the potential of integrating Hollow Yttrium-Oxide Spheres (HYSs) within a Polydimethylsiloxane (PDMS) matrix to enhance PDRC is investigated. Through a combination of experimental characterization and computational analysis, the optical properties and radiative cooling performance of PDMS films embedded with HYSs are evaluated. These results demonstrate that HYSs significantly improve both solar reflectivity and long-wave infrared (LWIR) emissivity of the PDMS matrix. Finite-Difference Time-Domain (FDTD) simulations confirm the scattering efficiency of HYSs across various wavelength ranges, highlighting their effectiveness as additives for enhancing the radiative properties of passive cooling materials. Experimental validation reveals enhanced reflectivity and emissivity of PDMS films with embedded HYSs, resulting in superior cooling performance compared to non-HYS counterparts. Overall, this study underscores the potential of HYS-infused PDMS films as a promising solution for passive radiative cooling, with broad applicability in diverse domains requiring efficient thermal management solutions. Additionally, these research insights pave the way for establishing an AI database for passive radiative cooling research, offering new avenues for further exploration and application in this field.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400770\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400770","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Enhancing Passive Radiative Cooling Films with Hollow Yttrium-Oxide Spheres Insights from FDTD Simulation.
Passive daytime radiative cooling (PDRC) presents a promising avenue for efficient thermal management without relying on electrical power. In this study, the potential of integrating Hollow Yttrium-Oxide Spheres (HYSs) within a Polydimethylsiloxane (PDMS) matrix to enhance PDRC is investigated. Through a combination of experimental characterization and computational analysis, the optical properties and radiative cooling performance of PDMS films embedded with HYSs are evaluated. These results demonstrate that HYSs significantly improve both solar reflectivity and long-wave infrared (LWIR) emissivity of the PDMS matrix. Finite-Difference Time-Domain (FDTD) simulations confirm the scattering efficiency of HYSs across various wavelength ranges, highlighting their effectiveness as additives for enhancing the radiative properties of passive cooling materials. Experimental validation reveals enhanced reflectivity and emissivity of PDMS films with embedded HYSs, resulting in superior cooling performance compared to non-HYS counterparts. Overall, this study underscores the potential of HYS-infused PDMS films as a promising solution for passive radiative cooling, with broad applicability in diverse domains requiring efficient thermal management solutions. Additionally, these research insights pave the way for establishing an AI database for passive radiative cooling research, offering new avenues for further exploration and application in this field.
期刊介绍:
Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.