Qi Zhao , Guoxun Su , Haowen Chen , Xuemeng Li , Yizhao Wu , Yali Wang , Jiayi Li , Bangyi Yin , Pei Ao , Puguo Hao , Yinsheng Li
{"title":"四环素及其降解产物在食地蚯蚓 Metaphire guillelmi 不同器官中的动态分布。","authors":"Qi Zhao , Guoxun Su , Haowen Chen , Xuemeng Li , Yizhao Wu , Yali Wang , Jiayi Li , Bangyi Yin , Pei Ao , Puguo Hao , Yinsheng Li","doi":"10.1016/j.ecoenv.2024.117250","DOIUrl":null,"url":null,"abstract":"<div><div>Tetracycline (TC) residues in the environment are harmful to plants and animals; earthworms play an important role in detoxicating tetracycline in the soil. However, the response of different systems of the geophagous earthworm to TC and its degradation products is still not understood well. To understand this problem, <em>Metaphire guillelmi</em> were exposed to the soil contaminated by 100 mg kg<sup>−1</sup> tetracycline for 21 days. Liquid chromatography was used to detect the tetracycline concentration and its degradation products in different organs of earthworms on the 1st, 7th, and 21st day. Structural equation model (SEM) was used to determine the cumulative interaction of TC among different systems of earthworm. The results showed that the degradation ability of TC of digestive organs (98.29–99.77 %) was stronger than that of reproductive organs (87.46–98.64 %). The main metabolic pathway of TC in earthworms might be direct dehydration. Anhydrotetracycline was the main degradation product in earthworm organs and could last long in production organs. For lipid soluble pollutants, such as TC, the digestive system of earthworms might be the main pathway for absorbing pollutants from the soil. Furthermore, earthworms can expedite the degradation of organic pollutants. Meanwhile, they also need to absorb more nutrients like nitrogen and phosphorus, to counteract the impact of pollutants on their antioxidant system and reproductive organs. Our study improves our understanding of the degradation and detoxification mechanism of earthworms to TC, and provides useful information for further assessment of the soil eco-risk.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"287 ","pages":"Article 117250"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic distribution of tetracycline and its degradation products in different organs of the geophagous earthworm Metaphire guillelmi\",\"authors\":\"Qi Zhao , Guoxun Su , Haowen Chen , Xuemeng Li , Yizhao Wu , Yali Wang , Jiayi Li , Bangyi Yin , Pei Ao , Puguo Hao , Yinsheng Li\",\"doi\":\"10.1016/j.ecoenv.2024.117250\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tetracycline (TC) residues in the environment are harmful to plants and animals; earthworms play an important role in detoxicating tetracycline in the soil. However, the response of different systems of the geophagous earthworm to TC and its degradation products is still not understood well. To understand this problem, <em>Metaphire guillelmi</em> were exposed to the soil contaminated by 100 mg kg<sup>−1</sup> tetracycline for 21 days. Liquid chromatography was used to detect the tetracycline concentration and its degradation products in different organs of earthworms on the 1st, 7th, and 21st day. Structural equation model (SEM) was used to determine the cumulative interaction of TC among different systems of earthworm. The results showed that the degradation ability of TC of digestive organs (98.29–99.77 %) was stronger than that of reproductive organs (87.46–98.64 %). The main metabolic pathway of TC in earthworms might be direct dehydration. Anhydrotetracycline was the main degradation product in earthworm organs and could last long in production organs. For lipid soluble pollutants, such as TC, the digestive system of earthworms might be the main pathway for absorbing pollutants from the soil. Furthermore, earthworms can expedite the degradation of organic pollutants. Meanwhile, they also need to absorb more nutrients like nitrogen and phosphorus, to counteract the impact of pollutants on their antioxidant system and reproductive organs. Our study improves our understanding of the degradation and detoxification mechanism of earthworms to TC, and provides useful information for further assessment of the soil eco-risk.</div></div>\",\"PeriodicalId\":303,\"journal\":{\"name\":\"Ecotoxicology and Environmental Safety\",\"volume\":\"287 \",\"pages\":\"Article 117250\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecotoxicology and Environmental Safety\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0147651324013265\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651324013265","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Dynamic distribution of tetracycline and its degradation products in different organs of the geophagous earthworm Metaphire guillelmi
Tetracycline (TC) residues in the environment are harmful to plants and animals; earthworms play an important role in detoxicating tetracycline in the soil. However, the response of different systems of the geophagous earthworm to TC and its degradation products is still not understood well. To understand this problem, Metaphire guillelmi were exposed to the soil contaminated by 100 mg kg−1 tetracycline for 21 days. Liquid chromatography was used to detect the tetracycline concentration and its degradation products in different organs of earthworms on the 1st, 7th, and 21st day. Structural equation model (SEM) was used to determine the cumulative interaction of TC among different systems of earthworm. The results showed that the degradation ability of TC of digestive organs (98.29–99.77 %) was stronger than that of reproductive organs (87.46–98.64 %). The main metabolic pathway of TC in earthworms might be direct dehydration. Anhydrotetracycline was the main degradation product in earthworm organs and could last long in production organs. For lipid soluble pollutants, such as TC, the digestive system of earthworms might be the main pathway for absorbing pollutants from the soil. Furthermore, earthworms can expedite the degradation of organic pollutants. Meanwhile, they also need to absorb more nutrients like nitrogen and phosphorus, to counteract the impact of pollutants on their antioxidant system and reproductive organs. Our study improves our understanding of the degradation and detoxification mechanism of earthworms to TC, and provides useful information for further assessment of the soil eco-risk.
期刊介绍:
Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.