铜表面等离子体共振促进了 S 型体系中的电荷转移,增强了可见光光催化氢气进化。

IF 9.4 1区 化学 Q1 CHEMISTRY, PHYSICAL Journal of Colloid and Interface Science Pub Date : 2024-10-18 DOI:10.1016/j.jcis.2024.10.087
{"title":"铜表面等离子体共振促进了 S 型体系中的电荷转移,增强了可见光光催化氢气进化。","authors":"","doi":"10.1016/j.jcis.2024.10.087","DOIUrl":null,"url":null,"abstract":"<div><div>Reasonably constructing nanocomposite photocatalysts with fast charge transfer and broad solar response capabilities is significant for efficiently converting solar energy into chemical energy. Cu modifies P25/CeO<sub>2</sub> heterojunctions prepared by photodeposition (P25 is commercial TiO<sub>2</sub>). The local surface plasmon resonance (LSPR) effect caused by Cu nanoparticles broadens the spectral response range and generates significant photothermal effects. After 90 s of irradiation, the temperature of 9.5 %Cu-P25/CeO<sub>2</sub> increases to 148.1 °C. The photocatalytic hydrogen evolution rate (HER) of 9.5 %Cu-P25/CeO<sub>2</sub> under visible light (λ = 400 nm) reaches 1538.2 μmol h<sup>−1</sup> g<sup>−1</sup>, which is 158.6 times, 17.7 times, and 2.5 times higher than that of Cerium dioxide (CeO<sub>2</sub>), P25, and P25/CeO<sub>2</sub>, respectively. This catalyst has stronger light absorption, easier carrier transfer, and separation. This study guides the construction of efficient hydrogen evolution photocatalysts.</div></div>","PeriodicalId":351,"journal":{"name":"Journal of Colloid and Interface Science","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cu surface plasmon resonance promoted charge transfer in S-scheme system enhanced visible light photocatalytic hydrogen evolution\",\"authors\":\"\",\"doi\":\"10.1016/j.jcis.2024.10.087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Reasonably constructing nanocomposite photocatalysts with fast charge transfer and broad solar response capabilities is significant for efficiently converting solar energy into chemical energy. Cu modifies P25/CeO<sub>2</sub> heterojunctions prepared by photodeposition (P25 is commercial TiO<sub>2</sub>). The local surface plasmon resonance (LSPR) effect caused by Cu nanoparticles broadens the spectral response range and generates significant photothermal effects. After 90 s of irradiation, the temperature of 9.5 %Cu-P25/CeO<sub>2</sub> increases to 148.1 °C. The photocatalytic hydrogen evolution rate (HER) of 9.5 %Cu-P25/CeO<sub>2</sub> under visible light (λ = 400 nm) reaches 1538.2 μmol h<sup>−1</sup> g<sup>−1</sup>, which is 158.6 times, 17.7 times, and 2.5 times higher than that of Cerium dioxide (CeO<sub>2</sub>), P25, and P25/CeO<sub>2</sub>, respectively. This catalyst has stronger light absorption, easier carrier transfer, and separation. This study guides the construction of efficient hydrogen evolution photocatalysts.</div></div>\",\"PeriodicalId\":351,\"journal\":{\"name\":\"Journal of Colloid and Interface Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Colloid and Interface Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021979724024172\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021979724024172","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

合理构建具有快速电荷转移和广泛太阳能响应能力的纳米复合光催化剂,对于高效地将太阳能转化为化学能具有重要意义。铜对通过光沉积制备的 P25/CeO2 异质结(P25 为商用 TiO2)进行了改性。铜纳米粒子引起的局部表面等离子体共振(LSPR)效应拓宽了光谱响应范围,并产生了显著的光热效应。辐照 90 秒后,9.5%Cu-P25/CeO2 的温度升至 148.1 °C。在可见光(λ = 400 nm)下,9.5 %Cu-P25/CeO2 的光催化氢进化率(HER)达到 1538.2 μmol h-1 g-1,分别是二氧化铈(CeO2)、P25 和 P25/CeO2 的 158.6 倍、17.7 倍和 2.5 倍。这种催化剂具有更强的光吸收能力,更易于载流子的转移和分离。这项研究为构建高效氢进化光催化剂提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cu surface plasmon resonance promoted charge transfer in S-scheme system enhanced visible light photocatalytic hydrogen evolution
Reasonably constructing nanocomposite photocatalysts with fast charge transfer and broad solar response capabilities is significant for efficiently converting solar energy into chemical energy. Cu modifies P25/CeO2 heterojunctions prepared by photodeposition (P25 is commercial TiO2). The local surface plasmon resonance (LSPR) effect caused by Cu nanoparticles broadens the spectral response range and generates significant photothermal effects. After 90 s of irradiation, the temperature of 9.5 %Cu-P25/CeO2 increases to 148.1 °C. The photocatalytic hydrogen evolution rate (HER) of 9.5 %Cu-P25/CeO2 under visible light (λ = 400 nm) reaches 1538.2 μmol h−1 g−1, which is 158.6 times, 17.7 times, and 2.5 times higher than that of Cerium dioxide (CeO2), P25, and P25/CeO2, respectively. This catalyst has stronger light absorption, easier carrier transfer, and separation. This study guides the construction of efficient hydrogen evolution photocatalysts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.10
自引率
7.10%
发文量
2568
审稿时长
2 months
期刊介绍: The Journal of Colloid and Interface Science publishes original research findings on the fundamental principles of colloid and interface science, as well as innovative applications in various fields. The criteria for publication include impact, quality, novelty, and originality. Emphasis: The journal emphasizes fundamental scientific innovation within the following categories: A.Colloidal Materials and Nanomaterials B.Soft Colloidal and Self-Assembly Systems C.Adsorption, Catalysis, and Electrochemistry D.Interfacial Processes, Capillarity, and Wetting E.Biomaterials and Nanomedicine F.Energy Conversion and Storage, and Environmental Technologies
期刊最新文献
Dendrite-free zinc metal anode for long-life zinc-ion batteries enabled by an artificial hydrophobic-zincophilic coating. Bioderived carbon aerogels loaded with g-C3N4 and their high Efficacy removing volatile organic compounds (VOCs). Crosslinking modification of starch improves the structural stability of hard carbon anodes for high-capacity sodium storage. Interfacial design of pyrene-based covalent organic framework for overall photocatalytic H2O2 synthesis in water. LaCo0.95Mo0.05O3/CeO2 composite can promote the effective activation of peroxymonosulfate via Co3+/Co2+ cycle and realize the efficient degradation of hydroxychloroquine sulfate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1