Keshav A Kailash, Shamimur R Akanda, Alexandra L Davis, Christie L Crandall, Luis A Castro, Lori A Setton, Jessica E Wagenseil
{"title":"用于确定有无动脉瘤的小鼠升胸主动脉质量传输特性的多相模型。","authors":"Keshav A Kailash, Shamimur R Akanda, Alexandra L Davis, Christie L Crandall, Luis A Castro, Lori A Setton, Jessica E Wagenseil","doi":"10.1007/s10237-024-01897-5","DOIUrl":null,"url":null,"abstract":"<p><p>Thoracic aortic aneurysms (TAAs) are associated with aortic wall remodeling that affects transmural transport or the movement of fluid and solute across the wall. In previous work, we used a Fbln4<sup>E57K/E57K</sup> (MU) mouse model to investigate transmural transport changes as a function of aneurysm severity. We compared wild-type (WT), MU with no aneurysm (MU-NA), MU with aneurysm (MU-A), and MU with an additional genetic mutation that led to increased aneurysm penetrance (MU-XA). We found that all aneurysmal aortas (MU-A and MU-XA) had lower fluid flux compared to WT. Non-aneurysmal aortas (MU-NA) had higher 4 kDa FITC-dextran solute flux than WT, but aneurysmal MU-A and MU-XA aortas had solute fluxes similar to WT. Our experimental results could not isolate competing factors, such as changes in aortic geometry and solid material properties among these mouse models, to determine how intrinsic transport properties change with aneurysm severity. The objective of this study is to use biphasic and multiphasic models to identify changes in transport material properties. Our biphasic model indicates that hydraulic permeability is significantly decreased in the severe aneurysm model (MU-XA) compared to non-aneurysmal aortas (MU-NA). Our multiphasic model shows that effective solute diffusivity is increased in MU-NA aortas compared to all others. Our findings reveal changes in intrinsic transport properties that depend on aneurysm severity and are important for understanding the movement of fluids and solutes that may play a role in the diagnosis, progression, or treatment of TAA.</p>","PeriodicalId":489,"journal":{"name":"Biomechanics and Modeling in Mechanobiology","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multiphasic model for determination of mouse ascending thoracic aorta mass transport properties with and without aneurysm.\",\"authors\":\"Keshav A Kailash, Shamimur R Akanda, Alexandra L Davis, Christie L Crandall, Luis A Castro, Lori A Setton, Jessica E Wagenseil\",\"doi\":\"10.1007/s10237-024-01897-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Thoracic aortic aneurysms (TAAs) are associated with aortic wall remodeling that affects transmural transport or the movement of fluid and solute across the wall. In previous work, we used a Fbln4<sup>E57K/E57K</sup> (MU) mouse model to investigate transmural transport changes as a function of aneurysm severity. We compared wild-type (WT), MU with no aneurysm (MU-NA), MU with aneurysm (MU-A), and MU with an additional genetic mutation that led to increased aneurysm penetrance (MU-XA). We found that all aneurysmal aortas (MU-A and MU-XA) had lower fluid flux compared to WT. Non-aneurysmal aortas (MU-NA) had higher 4 kDa FITC-dextran solute flux than WT, but aneurysmal MU-A and MU-XA aortas had solute fluxes similar to WT. Our experimental results could not isolate competing factors, such as changes in aortic geometry and solid material properties among these mouse models, to determine how intrinsic transport properties change with aneurysm severity. The objective of this study is to use biphasic and multiphasic models to identify changes in transport material properties. Our biphasic model indicates that hydraulic permeability is significantly decreased in the severe aneurysm model (MU-XA) compared to non-aneurysmal aortas (MU-NA). Our multiphasic model shows that effective solute diffusivity is increased in MU-NA aortas compared to all others. Our findings reveal changes in intrinsic transport properties that depend on aneurysm severity and are important for understanding the movement of fluids and solutes that may play a role in the diagnosis, progression, or treatment of TAA.</p>\",\"PeriodicalId\":489,\"journal\":{\"name\":\"Biomechanics and Modeling in Mechanobiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomechanics and Modeling in Mechanobiology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10237-024-01897-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomechanics and Modeling in Mechanobiology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10237-024-01897-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
A multiphasic model for determination of mouse ascending thoracic aorta mass transport properties with and without aneurysm.
Thoracic aortic aneurysms (TAAs) are associated with aortic wall remodeling that affects transmural transport or the movement of fluid and solute across the wall. In previous work, we used a Fbln4E57K/E57K (MU) mouse model to investigate transmural transport changes as a function of aneurysm severity. We compared wild-type (WT), MU with no aneurysm (MU-NA), MU with aneurysm (MU-A), and MU with an additional genetic mutation that led to increased aneurysm penetrance (MU-XA). We found that all aneurysmal aortas (MU-A and MU-XA) had lower fluid flux compared to WT. Non-aneurysmal aortas (MU-NA) had higher 4 kDa FITC-dextran solute flux than WT, but aneurysmal MU-A and MU-XA aortas had solute fluxes similar to WT. Our experimental results could not isolate competing factors, such as changes in aortic geometry and solid material properties among these mouse models, to determine how intrinsic transport properties change with aneurysm severity. The objective of this study is to use biphasic and multiphasic models to identify changes in transport material properties. Our biphasic model indicates that hydraulic permeability is significantly decreased in the severe aneurysm model (MU-XA) compared to non-aneurysmal aortas (MU-NA). Our multiphasic model shows that effective solute diffusivity is increased in MU-NA aortas compared to all others. Our findings reveal changes in intrinsic transport properties that depend on aneurysm severity and are important for understanding the movement of fluids and solutes that may play a role in the diagnosis, progression, or treatment of TAA.
期刊介绍:
Mechanics regulates biological processes at the molecular, cellular, tissue, organ, and organism levels. A goal of this journal is to promote basic and applied research that integrates the expanding knowledge-bases in the allied fields of biomechanics and mechanobiology. Approaches may be experimental, theoretical, or computational; they may address phenomena at the nano, micro, or macrolevels. Of particular interest are investigations that
(1) quantify the mechanical environment in which cells and matrix function in health, disease, or injury,
(2) identify and quantify mechanosensitive responses and their mechanisms,
(3) detail inter-relations between mechanics and biological processes such as growth, remodeling, adaptation, and repair, and
(4) report discoveries that advance therapeutic and diagnostic procedures.
Especially encouraged are analytical and computational models based on solid mechanics, fluid mechanics, or thermomechanics, and their interactions; also encouraged are reports of new experimental methods that expand measurement capabilities and new mathematical methods that facilitate analysis.