利用分子印迹聚合物(MIP)水凝胶微粒抑制α-淀粉酶的酶活性

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomacromolecules Pub Date : 2024-11-11 Epub Date: 2024-10-31 DOI:10.1021/acs.biomac.4c01097
Charis I Winder, Chester Blackburn, Charles L Hutchinson, Amy Q Shen, Nicholas W Turner, Mark V Sullivan
{"title":"利用分子印迹聚合物(MIP)水凝胶微粒抑制α-淀粉酶的酶活性","authors":"Charis I Winder, Chester Blackburn, Charles L Hutchinson, Amy Q Shen, Nicholas W Turner, Mark V Sullivan","doi":"10.1021/acs.biomac.4c01097","DOIUrl":null,"url":null,"abstract":"<p><p>Molecularly imprinted polymers (MIPs) are a class of synthetic recognition materials that offer a cost-effective and robust alternative to antibodies. While MIPs have found predominant use in biosensing and diagnostic applications, their potential for alternative uses, such as enzyme inhibition, remains unexplored. In this work, we synthesized a range of acrylamide-based hydrogel MIP microparticles (35 μm) specific for the recognition of α-amylase. These MIPs also showed good selectivity toward the target protein with over 96% binding of the target protein, compared with the control nonimprinted polymer (NIP) counterparts. Specificity of the MIPs was determined with the binding of nontarget proteins, trypsin, human serum albumin (HSA), and bovine serum albumin (BSA). The MIPs were further evaluated for their ability to inhibit α-amylase enzymatic activity, showing a significant decrease in activity. These findings highlight the potential of MIPs as enzyme inhibitors, suggesting an innovative application beyond their conventional use.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"7459-7465"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enzyme Activity Inhibition of α-Amylase Using Molecularly Imprinted Polymer (MIP) Hydrogel Microparticles.\",\"authors\":\"Charis I Winder, Chester Blackburn, Charles L Hutchinson, Amy Q Shen, Nicholas W Turner, Mark V Sullivan\",\"doi\":\"10.1021/acs.biomac.4c01097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molecularly imprinted polymers (MIPs) are a class of synthetic recognition materials that offer a cost-effective and robust alternative to antibodies. While MIPs have found predominant use in biosensing and diagnostic applications, their potential for alternative uses, such as enzyme inhibition, remains unexplored. In this work, we synthesized a range of acrylamide-based hydrogel MIP microparticles (35 μm) specific for the recognition of α-amylase. These MIPs also showed good selectivity toward the target protein with over 96% binding of the target protein, compared with the control nonimprinted polymer (NIP) counterparts. Specificity of the MIPs was determined with the binding of nontarget proteins, trypsin, human serum albumin (HSA), and bovine serum albumin (BSA). The MIPs were further evaluated for their ability to inhibit α-amylase enzymatic activity, showing a significant decrease in activity. These findings highlight the potential of MIPs as enzyme inhibitors, suggesting an innovative application beyond their conventional use.</p>\",\"PeriodicalId\":30,\"journal\":{\"name\":\"Biomacromolecules\",\"volume\":\" \",\"pages\":\"7459-7465\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomacromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biomac.4c01097\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01097","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

分子印迹聚合物(MIPs)是一类合成识别材料,可作为抗体的替代品,成本低廉,性能稳定。虽然分子印迹聚合物主要用于生物传感和诊断应用,但其在酶抑制等其他用途方面的潜力仍有待开发。在这项工作中,我们合成了一系列丙烯酰胺基水凝胶 MIP 微颗粒(35 μm),专门用于识别α-淀粉酶。与对照组非印迹聚合物(NIP)相比,这些 MIPs 对目标蛋白质也表现出良好的选择性,目标蛋白质的结合率超过 96%。通过与非目标蛋白、胰蛋白酶、人血清白蛋白(HSA)和牛血清白蛋白(BSA)的结合,确定了 MIPs 的特异性。进一步评估了 MIPs 抑制α-淀粉酶酶活性的能力,结果显示其活性显著降低。这些发现凸显了 MIPs 作为酶抑制剂的潜力,表明其在传统用途之外还有创新应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enzyme Activity Inhibition of α-Amylase Using Molecularly Imprinted Polymer (MIP) Hydrogel Microparticles.

Molecularly imprinted polymers (MIPs) are a class of synthetic recognition materials that offer a cost-effective and robust alternative to antibodies. While MIPs have found predominant use in biosensing and diagnostic applications, their potential for alternative uses, such as enzyme inhibition, remains unexplored. In this work, we synthesized a range of acrylamide-based hydrogel MIP microparticles (35 μm) specific for the recognition of α-amylase. These MIPs also showed good selectivity toward the target protein with over 96% binding of the target protein, compared with the control nonimprinted polymer (NIP) counterparts. Specificity of the MIPs was determined with the binding of nontarget proteins, trypsin, human serum albumin (HSA), and bovine serum albumin (BSA). The MIPs were further evaluated for their ability to inhibit α-amylase enzymatic activity, showing a significant decrease in activity. These findings highlight the potential of MIPs as enzyme inhibitors, suggesting an innovative application beyond their conventional use.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
期刊最新文献
Dendrimer/Copper(II) Complex-Mediated siRNA Delivery Disrupts Lactate Metabolism to Reprogram the Local Immune Microenvironment against Tumor Growth and Metastasis. A Versatile Composite Hydrogel with Spatiotemporal Drug Delivery of Mesoporous ZnO and Recombinant Human Collagen for Diabetic Infected Wound Healing. Hydrogels Based on Polyelectrolyte Complexes: Underlying Principles and Biomedical Applications. Single-Step Synthesis of Highly Sensitive 19F MRI Tracers by Gradient Copolymerization-Induced Self-Assembly. The Improved Redispersibility of Cellulose Nanocrystals Using Hydroxypropyl Cellulose and Structure Color from Redispersed Cellulose Nanocrystals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1