Philipp E Geyer, Daniel Hornburg, Maria Pernemalm, Stefanie M Hauck, Krishnan K Palaniappan, Vincent Albrecht, Laura F Dagley, Robert L Moritz, Xiaobo Yu, Fredrik Edfors, Yves Vandenbrouck, Johannes B Mueller-Reif, Zhi Sun, Virginie Brun, Sara Ahadi, Gilbert S Omenn, Eric W Deutsch, Jochen M Schwenk
{"title":"循环蛋白质组--技术发展、当前挑战和未来趋势。","authors":"Philipp E Geyer, Daniel Hornburg, Maria Pernemalm, Stefanie M Hauck, Krishnan K Palaniappan, Vincent Albrecht, Laura F Dagley, Robert L Moritz, Xiaobo Yu, Fredrik Edfors, Yves Vandenbrouck, Johannes B Mueller-Reif, Zhi Sun, Virginie Brun, Sara Ahadi, Gilbert S Omenn, Eric W Deutsch, Jochen M Schwenk","doi":"10.1021/acs.jproteome.4c00586","DOIUrl":null,"url":null,"abstract":"<p><p>Recent improvements in proteomics technologies have fundamentally altered our capacities to characterize human biology. There is an ever-growing interest in using these novel methods for studying the circulating proteome, as blood offers an accessible window into human health. However, every methodological innovation and analytical progress calls for reassessing our existing approaches and routines to ensure that the new data will add value to the greater biomedical research community and avoid previous errors. As representatives of HUPO's Human Plasma Proteome Project (HPPP), we present our 2024 survey of the current progress in our community, including the latest build of the Human Plasma Proteome PeptideAtlas that now comprises 4608 proteins detected in 113 data sets. We then discuss the updates of established proteomics methods, emerging technologies, and investigations of proteoforms, protein networks, extracellualr vesicles, circulating antibodies and microsamples. Finally, we provide a prospective view of using the current and emerging proteomics tools in studies of circulating proteins.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Circulating Proteome─Technological Developments, Current Challenges, and Future Trends.\",\"authors\":\"Philipp E Geyer, Daniel Hornburg, Maria Pernemalm, Stefanie M Hauck, Krishnan K Palaniappan, Vincent Albrecht, Laura F Dagley, Robert L Moritz, Xiaobo Yu, Fredrik Edfors, Yves Vandenbrouck, Johannes B Mueller-Reif, Zhi Sun, Virginie Brun, Sara Ahadi, Gilbert S Omenn, Eric W Deutsch, Jochen M Schwenk\",\"doi\":\"10.1021/acs.jproteome.4c00586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent improvements in proteomics technologies have fundamentally altered our capacities to characterize human biology. There is an ever-growing interest in using these novel methods for studying the circulating proteome, as blood offers an accessible window into human health. However, every methodological innovation and analytical progress calls for reassessing our existing approaches and routines to ensure that the new data will add value to the greater biomedical research community and avoid previous errors. As representatives of HUPO's Human Plasma Proteome Project (HPPP), we present our 2024 survey of the current progress in our community, including the latest build of the Human Plasma Proteome PeptideAtlas that now comprises 4608 proteins detected in 113 data sets. We then discuss the updates of established proteomics methods, emerging technologies, and investigations of proteoforms, protein networks, extracellualr vesicles, circulating antibodies and microsamples. Finally, we provide a prospective view of using the current and emerging proteomics tools in studies of circulating proteins.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jproteome.4c00586\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00586","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
The Circulating Proteome─Technological Developments, Current Challenges, and Future Trends.
Recent improvements in proteomics technologies have fundamentally altered our capacities to characterize human biology. There is an ever-growing interest in using these novel methods for studying the circulating proteome, as blood offers an accessible window into human health. However, every methodological innovation and analytical progress calls for reassessing our existing approaches and routines to ensure that the new data will add value to the greater biomedical research community and avoid previous errors. As representatives of HUPO's Human Plasma Proteome Project (HPPP), we present our 2024 survey of the current progress in our community, including the latest build of the Human Plasma Proteome PeptideAtlas that now comprises 4608 proteins detected in 113 data sets. We then discuss the updates of established proteomics methods, emerging technologies, and investigations of proteoforms, protein networks, extracellualr vesicles, circulating antibodies and microsamples. Finally, we provide a prospective view of using the current and emerging proteomics tools in studies of circulating proteins.