将 Ag 改性 BiOCl 作为高效催化剂用于太阳光驱动的有机污染物降解和制氢。

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2024-11-12 Epub Date: 2024-10-31 DOI:10.1021/acs.langmuir.4c03550
Preety Yadav, Neeraj Dhariwal, Manju Kumari, Amit Sanger, Vinod Kumar, Om Prakash Thakur
{"title":"将 Ag 改性 BiOCl 作为高效催化剂用于太阳光驱动的有机污染物降解和制氢。","authors":"Preety Yadav, Neeraj Dhariwal, Manju Kumari, Amit Sanger, Vinod Kumar, Om Prakash Thakur","doi":"10.1021/acs.langmuir.4c03550","DOIUrl":null,"url":null,"abstract":"<p><p>The direct conversion of solar energy into clean fuels has emerged as an effective approach for future energy production and addressing environmental challenges. This research focuses on the synthesis of BiOCl using a straightforward hydrothermal method with Ag modification achieved through green synthesis. These materials were applied to enhance photocatalytic processes and hydrogen (H<sub>2</sub>) evolution. Comprehensive characterization of the synthesized photocatalysts was performed by using techniques, such as XRD, SEM, BET, XPS, and UV-vis spectroscopy. The Ag/BiOCl composite demonstrated impressive photocatalytic performance, achieving degradation rates of 96% for RhB, 87.7% for TC, and 85% for HQ under 18 min of solar irradiation. Additionally, a high mineralization rate of 92% was observed through Total Organic Carbon (TOC) analysis. Furthermore, the Ag/BiOCl composite exhibited a significant H<sub>2</sub> evolution rate of 565 μmol g<sup>-1</sup> h<sup>-1</sup>, which is nearly double that of pure BiOCl. The interaction between Ag and BiOCl was found to enhance the generation of O<sub>2</sub>- radicals, as confirmed by radical trapping experiments, with the underlying mechanism elucidated using LC-HRMS. The nanoparticles also demonstrated excellent degradation of industrial waste, highlighting the potential of Ag/BiOCl for use in the purification and sterilization of industrial effluents.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Ag-Modified BiOCl as an Efficient and Effective Catalyst for Solar Light-Driven Organic Pollutant Degradation and Hydrogen Production.\",\"authors\":\"Preety Yadav, Neeraj Dhariwal, Manju Kumari, Amit Sanger, Vinod Kumar, Om Prakash Thakur\",\"doi\":\"10.1021/acs.langmuir.4c03550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The direct conversion of solar energy into clean fuels has emerged as an effective approach for future energy production and addressing environmental challenges. This research focuses on the synthesis of BiOCl using a straightforward hydrothermal method with Ag modification achieved through green synthesis. These materials were applied to enhance photocatalytic processes and hydrogen (H<sub>2</sub>) evolution. Comprehensive characterization of the synthesized photocatalysts was performed by using techniques, such as XRD, SEM, BET, XPS, and UV-vis spectroscopy. The Ag/BiOCl composite demonstrated impressive photocatalytic performance, achieving degradation rates of 96% for RhB, 87.7% for TC, and 85% for HQ under 18 min of solar irradiation. Additionally, a high mineralization rate of 92% was observed through Total Organic Carbon (TOC) analysis. Furthermore, the Ag/BiOCl composite exhibited a significant H<sub>2</sub> evolution rate of 565 μmol g<sup>-1</sup> h<sup>-1</sup>, which is nearly double that of pure BiOCl. The interaction between Ag and BiOCl was found to enhance the generation of O<sub>2</sub>- radicals, as confirmed by radical trapping experiments, with the underlying mechanism elucidated using LC-HRMS. The nanoparticles also demonstrated excellent degradation of industrial waste, highlighting the potential of Ag/BiOCl for use in the purification and sterilization of industrial effluents.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03550\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/31 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03550","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/31 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将太阳能直接转化为清洁燃料已成为未来能源生产和应对环境挑战的有效方法。本研究的重点是采用直接水热法合成 BiOCl,并通过绿色合成实现 Ag 修饰。这些材料被用于增强光催化过程和氢(H2)进化。利用 XRD、SEM、BET、XPS 和紫外可见光谱等技术对合成的光催化剂进行了全面表征。Ag/BiOCl 复合材料的光催化性能令人印象深刻,在 18 分钟的太阳照射下,RhB 的降解率达到 96%,TC 的降解率达到 87.7%,HQ 的降解率达到 85%。此外,通过总有机碳(TOC)分析还观察到 92% 的高矿化率。此外,Ag/BiOCl 复合材料的 H2 演化率高达 565 μmol g-1 h-1,几乎是纯 BiOCl 的两倍。通过自由基捕获实验证实,Ag 和 BiOCl 之间的相互作用增强了 O2- 自由基的生成,并利用 LC-HRMS 阐明了其基本机制。纳米颗粒还表现出对工业废物的出色降解能力,突出了 Ag/BiOCl 在工业废水净化和杀菌方面的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Engineering Ag-Modified BiOCl as an Efficient and Effective Catalyst for Solar Light-Driven Organic Pollutant Degradation and Hydrogen Production.

The direct conversion of solar energy into clean fuels has emerged as an effective approach for future energy production and addressing environmental challenges. This research focuses on the synthesis of BiOCl using a straightforward hydrothermal method with Ag modification achieved through green synthesis. These materials were applied to enhance photocatalytic processes and hydrogen (H2) evolution. Comprehensive characterization of the synthesized photocatalysts was performed by using techniques, such as XRD, SEM, BET, XPS, and UV-vis spectroscopy. The Ag/BiOCl composite demonstrated impressive photocatalytic performance, achieving degradation rates of 96% for RhB, 87.7% for TC, and 85% for HQ under 18 min of solar irradiation. Additionally, a high mineralization rate of 92% was observed through Total Organic Carbon (TOC) analysis. Furthermore, the Ag/BiOCl composite exhibited a significant H2 evolution rate of 565 μmol g-1 h-1, which is nearly double that of pure BiOCl. The interaction between Ag and BiOCl was found to enhance the generation of O2- radicals, as confirmed by radical trapping experiments, with the underlying mechanism elucidated using LC-HRMS. The nanoparticles also demonstrated excellent degradation of industrial waste, highlighting the potential of Ag/BiOCl for use in the purification and sterilization of industrial effluents.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
pH-Responsive Natural Deep Eutectic Solvent: An Environmental Alternative for the Sustainable Extraction of Petroleum Hydrocarbons from Oil Sands Interfacial Assembly of Peptide Carbon Dot Hybrids Enables Photoinduced Electron Transfer with Improved Photoresponse Linearly Scaling Molecular Dynamic Modeling To Simulate Picosecond Laser Ablation of a Silicon Carbide Crystal Advances in Aerosol Nanostructuring: Functions and Control of Next-Generation Particles. Electrospinning of LaB6/PEDOT:PSS/PEO Fiber Composites of Unique Morphologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1