Zuhal Tunçbilek, Neşe Keklikçioğlu Çakmak, Ayça Taş, Durmuş Ayan, Yavuz Siliğ
{"title":"聚乙二醇化二氧化钛纳米粒子结合的多柔比星和紫杉醇药物影响前列腺癌细胞并改变 DUSP 家族基因的表达。","authors":"Zuhal Tunçbilek, Neşe Keklikçioğlu Çakmak, Ayça Taş, Durmuş Ayan, Yavuz Siliğ","doi":"10.2174/0118715206330115241015092548","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>PC is among the cancer types with high incidence and mortality. New and effective strategies are being sought for the treatment of deadly cancers, such as PC. In this context, the use of nanocarrier systems containing titanium dioxide can improve treatment outcomes and increase the effectiveness of anticancer drugs.</p><p><strong>Objective: </strong>This study aimed to evaluate the cytotoxic activity of doxorubicin (DOX) and paclitaxel (PTX) drugs on the prostate cancer (PC) cell line by attaching them to pegylated titanium dioxide nanoparticles and to examine their effect on the expression levels of dual-specificity phosphatase (DUSP) genes.</p><p><strong>Methods: </strong>Free DOX and PTX drugs, DOX and PTX compounds bound to the pegylated titanium dioxide system were applied to DU-145 cells, a PC cell line, under in vitro conditions, and MTT analysis was performed. Additionally, the IC50 values of these compounds were analyzed. In addition, the expression levels of DUSP1, DUSP2, DUSP4, DUSP6, and DUSP10 genes were measured using RT-PCR. Additionally, bioinformatics and molecular docking analyses were performed on DUSP proteins.</p><p><strong>Results: </strong>The cytotoxic activity of PTX compound bound to PEGylated TiO2 was found to be higher than that of DOX compound bound to PEGylated TiO2. Additionally, when the expression levels were compared to the control group, the expression levels of DUSPs were found to be lower in the drugs of the drug carrier systems.</p><p><strong>Conclusion: </strong>Accordingly, it was predicted that the pegylated titanium dioxide nano-based carrier could be effective in PC.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PEGylated Titanium Dioxide Nanoparticle-bound Doxorubicin and Paclitaxel Drugs Affect Prostate Cancer Cells and Alter the Expression of DUSP Family Genes.\",\"authors\":\"Zuhal Tunçbilek, Neşe Keklikçioğlu Çakmak, Ayça Taş, Durmuş Ayan, Yavuz Siliğ\",\"doi\":\"10.2174/0118715206330115241015092548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>PC is among the cancer types with high incidence and mortality. New and effective strategies are being sought for the treatment of deadly cancers, such as PC. In this context, the use of nanocarrier systems containing titanium dioxide can improve treatment outcomes and increase the effectiveness of anticancer drugs.</p><p><strong>Objective: </strong>This study aimed to evaluate the cytotoxic activity of doxorubicin (DOX) and paclitaxel (PTX) drugs on the prostate cancer (PC) cell line by attaching them to pegylated titanium dioxide nanoparticles and to examine their effect on the expression levels of dual-specificity phosphatase (DUSP) genes.</p><p><strong>Methods: </strong>Free DOX and PTX drugs, DOX and PTX compounds bound to the pegylated titanium dioxide system were applied to DU-145 cells, a PC cell line, under in vitro conditions, and MTT analysis was performed. Additionally, the IC50 values of these compounds were analyzed. In addition, the expression levels of DUSP1, DUSP2, DUSP4, DUSP6, and DUSP10 genes were measured using RT-PCR. Additionally, bioinformatics and molecular docking analyses were performed on DUSP proteins.</p><p><strong>Results: </strong>The cytotoxic activity of PTX compound bound to PEGylated TiO2 was found to be higher than that of DOX compound bound to PEGylated TiO2. Additionally, when the expression levels were compared to the control group, the expression levels of DUSPs were found to be lower in the drugs of the drug carrier systems.</p><p><strong>Conclusion: </strong>Accordingly, it was predicted that the pegylated titanium dioxide nano-based carrier could be effective in PC.</p>\",\"PeriodicalId\":7934,\"journal\":{\"name\":\"Anti-cancer agents in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-cancer agents in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715206330115241015092548\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206330115241015092548","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
PEGylated Titanium Dioxide Nanoparticle-bound Doxorubicin and Paclitaxel Drugs Affect Prostate Cancer Cells and Alter the Expression of DUSP Family Genes.
Background: PC is among the cancer types with high incidence and mortality. New and effective strategies are being sought for the treatment of deadly cancers, such as PC. In this context, the use of nanocarrier systems containing titanium dioxide can improve treatment outcomes and increase the effectiveness of anticancer drugs.
Objective: This study aimed to evaluate the cytotoxic activity of doxorubicin (DOX) and paclitaxel (PTX) drugs on the prostate cancer (PC) cell line by attaching them to pegylated titanium dioxide nanoparticles and to examine their effect on the expression levels of dual-specificity phosphatase (DUSP) genes.
Methods: Free DOX and PTX drugs, DOX and PTX compounds bound to the pegylated titanium dioxide system were applied to DU-145 cells, a PC cell line, under in vitro conditions, and MTT analysis was performed. Additionally, the IC50 values of these compounds were analyzed. In addition, the expression levels of DUSP1, DUSP2, DUSP4, DUSP6, and DUSP10 genes were measured using RT-PCR. Additionally, bioinformatics and molecular docking analyses were performed on DUSP proteins.
Results: The cytotoxic activity of PTX compound bound to PEGylated TiO2 was found to be higher than that of DOX compound bound to PEGylated TiO2. Additionally, when the expression levels were compared to the control group, the expression levels of DUSPs were found to be lower in the drugs of the drug carrier systems.
Conclusion: Accordingly, it was predicted that the pegylated titanium dioxide nano-based carrier could be effective in PC.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.