Jeroen D M Schreel, Guillaume Théroux-Rancourt, Adam B Roddy
{"title":"将结构与功能联系起来:叶绿体中层结构与内在水分利用效率之间的联系。","authors":"Jeroen D M Schreel, Guillaume Théroux-Rancourt, Adam B Roddy","doi":"10.1071/FP24150","DOIUrl":null,"url":null,"abstract":"<p><p>Climate change-driven drought events are becoming unescapable in an increasing number of areas worldwide. Understanding how plants are able to adapt to these changing environmental conditions is a non-trivial challenge. Physiologically, improving a plant's intrinsic water use efficiency (WUEi ) will be essential for plant survival in dry conditions. Physically, plant adaptation and acclimatisation are constrained by a plant's anatomy. In other words, there is a strong link between anatomical structure and physiological function. Former research predominantly focused on using 2D anatomical measurements to approximate 3D structures based on the assumption of ideal shapes, such as spherical spongy mesophyll cells. As a result of increasing progress in 3D imaging technology, the validity of these assumptions is being assessed, and recent research has indicated that these approximations can contain significant errors. We suggest to invert the workflow and use the less common 3D assessments to provide corrections and functions for the more widely available 2D assessments. By combining these 3D and corrected 2D anatomical assessments with physiological measurements of WUEi , our understanding of how a plant's physical adaptation affects its function will increase and greatly improve our ability to assess plant survival.</p>","PeriodicalId":12483,"journal":{"name":"Functional Plant Biology","volume":"51 ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linking structure to function: the connection between mesophyll structure and intrinsic water use efficiency.\",\"authors\":\"Jeroen D M Schreel, Guillaume Théroux-Rancourt, Adam B Roddy\",\"doi\":\"10.1071/FP24150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Climate change-driven drought events are becoming unescapable in an increasing number of areas worldwide. Understanding how plants are able to adapt to these changing environmental conditions is a non-trivial challenge. Physiologically, improving a plant's intrinsic water use efficiency (WUEi ) will be essential for plant survival in dry conditions. Physically, plant adaptation and acclimatisation are constrained by a plant's anatomy. In other words, there is a strong link between anatomical structure and physiological function. Former research predominantly focused on using 2D anatomical measurements to approximate 3D structures based on the assumption of ideal shapes, such as spherical spongy mesophyll cells. As a result of increasing progress in 3D imaging technology, the validity of these assumptions is being assessed, and recent research has indicated that these approximations can contain significant errors. We suggest to invert the workflow and use the less common 3D assessments to provide corrections and functions for the more widely available 2D assessments. By combining these 3D and corrected 2D anatomical assessments with physiological measurements of WUEi , our understanding of how a plant's physical adaptation affects its function will increase and greatly improve our ability to assess plant survival.</p>\",\"PeriodicalId\":12483,\"journal\":{\"name\":\"Functional Plant Biology\",\"volume\":\"51 \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Functional Plant Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1071/FP24150\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Functional Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1071/FP24150","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Linking structure to function: the connection between mesophyll structure and intrinsic water use efficiency.
Climate change-driven drought events are becoming unescapable in an increasing number of areas worldwide. Understanding how plants are able to adapt to these changing environmental conditions is a non-trivial challenge. Physiologically, improving a plant's intrinsic water use efficiency (WUEi ) will be essential for plant survival in dry conditions. Physically, plant adaptation and acclimatisation are constrained by a plant's anatomy. In other words, there is a strong link between anatomical structure and physiological function. Former research predominantly focused on using 2D anatomical measurements to approximate 3D structures based on the assumption of ideal shapes, such as spherical spongy mesophyll cells. As a result of increasing progress in 3D imaging technology, the validity of these assumptions is being assessed, and recent research has indicated that these approximations can contain significant errors. We suggest to invert the workflow and use the less common 3D assessments to provide corrections and functions for the more widely available 2D assessments. By combining these 3D and corrected 2D anatomical assessments with physiological measurements of WUEi , our understanding of how a plant's physical adaptation affects its function will increase and greatly improve our ability to assess plant survival.
期刊介绍:
Functional Plant Biology (formerly known as Australian Journal of Plant Physiology) publishes papers of a broad interest that advance our knowledge on mechanisms by which plants operate and interact with environment. Of specific interest are mechanisms and signal transduction pathways by which plants adapt to extreme environmental conditions such as high and low temperatures, drought, flooding, salinity, pathogens, and other major abiotic and biotic stress factors. FPB also encourages papers on emerging concepts and new tools in plant biology, and studies on the following functional areas encompassing work from the molecular through whole plant to community scale. FPB does not publish merely phenomenological observations or findings of merely applied significance.
Functional Plant Biology is published with the endorsement of the Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the Australian Academy of Science.
Functional Plant Biology is published in affiliation with the Federation of European Societies of Plant Biology and in Australia, is associated with the Australian Society of Plant Scientists and the New Zealand Society of Plant Biologists.