{"title":"法拉第旋转法提高了电子电偶矩灵敏度的上限。","authors":"Huagang Xiao, Ruijie Zhang, Tao Gao","doi":"10.1063/5.0225370","DOIUrl":null,"url":null,"abstract":"<p><p>The electron electric-dipole-moment (eEDM) is a powerful tool for exploring new particles. The candidates for eEDM search are heavy atoms and their molecules, which are well known for the obvious relativistic effect. Lead atom is considered to be the most ideal relativistic atom [Park et al., Nat. Commun. 11(1), 815 (2020)]. PbH molecule is an important representative of the Pb compound and is considered a cold candidate molecule due to the high diagonal Franck-Condon factors. We systematically investigated the (eEDM) searches of PbH using a two-component approach. The parity- and time-reversal symmetry violation constants of ground and excited states, including internal effective electric field Eeff, electron-nucleon scalar-pseudoscalar interaction constant WP,T, and nuclear magnetic quadrupole moment, were obtained and compared to other molecules. In addition, we designed two experimental methods to measure the sensitivity of the eEDM, indicating that the Faraday rotation method could greatly improve its sensitivity.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Faraday rotation method improves the upper limit of the electron electric-dipole-moment sensitivity.\",\"authors\":\"Huagang Xiao, Ruijie Zhang, Tao Gao\",\"doi\":\"10.1063/5.0225370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electron electric-dipole-moment (eEDM) is a powerful tool for exploring new particles. The candidates for eEDM search are heavy atoms and their molecules, which are well known for the obvious relativistic effect. Lead atom is considered to be the most ideal relativistic atom [Park et al., Nat. Commun. 11(1), 815 (2020)]. PbH molecule is an important representative of the Pb compound and is considered a cold candidate molecule due to the high diagonal Franck-Condon factors. We systematically investigated the (eEDM) searches of PbH using a two-component approach. The parity- and time-reversal symmetry violation constants of ground and excited states, including internal effective electric field Eeff, electron-nucleon scalar-pseudoscalar interaction constant WP,T, and nuclear magnetic quadrupole moment, were obtained and compared to other molecules. In addition, we designed two experimental methods to measure the sensitivity of the eEDM, indicating that the Faraday rotation method could greatly improve its sensitivity.</p>\",\"PeriodicalId\":15313,\"journal\":{\"name\":\"Journal of Chemical Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Physics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0225370\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0225370","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Faraday rotation method improves the upper limit of the electron electric-dipole-moment sensitivity.
The electron electric-dipole-moment (eEDM) is a powerful tool for exploring new particles. The candidates for eEDM search are heavy atoms and their molecules, which are well known for the obvious relativistic effect. Lead atom is considered to be the most ideal relativistic atom [Park et al., Nat. Commun. 11(1), 815 (2020)]. PbH molecule is an important representative of the Pb compound and is considered a cold candidate molecule due to the high diagonal Franck-Condon factors. We systematically investigated the (eEDM) searches of PbH using a two-component approach. The parity- and time-reversal symmetry violation constants of ground and excited states, including internal effective electric field Eeff, electron-nucleon scalar-pseudoscalar interaction constant WP,T, and nuclear magnetic quadrupole moment, were obtained and compared to other molecules. In addition, we designed two experimental methods to measure the sensitivity of the eEDM, indicating that the Faraday rotation method could greatly improve its sensitivity.
期刊介绍:
The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance.
Topical coverage includes:
Theoretical Methods and Algorithms
Advanced Experimental Techniques
Atoms, Molecules, and Clusters
Liquids, Glasses, and Crystals
Surfaces, Interfaces, and Materials
Polymers and Soft Matter
Biological Molecules and Networks.