{"title":"分析特定损伤相关分子模式相关基因在骨关节炎中的作用并研究β-淀粉样蛋白与载脂蛋白E异构体之间的关联。","authors":"Fangling Yuan, Yatian Tang, Feifei Zheng, Qipeng Xie","doi":"10.1159/000541542","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Osteoarthritis (OA) is a prevalent chronic joint disorder. It is characterized by an immune response that maintains a low level of inflammation throughout its progression. During OA, cartilage degradation leads to the release of damage-associated molecular patterns (DAMPs), which intensify the inflammatory response. β-Amyloid is a well-recognized DAMP in OA, can interact with APOE isoforms.</p><p><strong>Methods: </strong>This study identified DAMPs-related genes in OA using bioinformatics techniques. Additionally, we examined the expression levels of β-amyloid and apolipoprotein E (ApoE) isoforms by enzyme-linked immunosorbent assay.</p><p><strong>Results: </strong>We identified 10 key genes by machine learning techniques. Immune infiltration analysis revealed upregulation of various immune cell types in OA cartilage, underscoring the critical role of inflammation in OA pathogenesis. In the validation study, elevated serum levels of β-amyloid in knee osteoarthritis (KOA) patients were confirmed, showing positive correlations with ApoE2 and ApoE4. Notably, ApoE3 was identified as an independent protective factor against KOA.</p><p><strong>Conclusion: </strong>In this bioinformatics analysis, we identified the DAMPs-related genes of KOA and explored their potential functions and regulatory networks. The high expression of β-amyloid in KOA was confirmed by experiments, and the correlation between β-amyloid and ApoE2, ApoE4 in KOA was revealed for the first time, this provides a new way to explore the pathogenesis of KOA and to study the therapeutic targets of KOA.</p>","PeriodicalId":16113,"journal":{"name":"Journal of Innate Immunity","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521507/pdf/","citationCount":"0","resultStr":"{\"title\":\"Analyzing the Role of Specific Damage-Associated Molecular Patterns-Related Genes in Osteoarthritis and Investigating the Association between β-Amyloid and Apolipoprotein E Isoforms.\",\"authors\":\"Fangling Yuan, Yatian Tang, Feifei Zheng, Qipeng Xie\",\"doi\":\"10.1159/000541542\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Osteoarthritis (OA) is a prevalent chronic joint disorder. It is characterized by an immune response that maintains a low level of inflammation throughout its progression. During OA, cartilage degradation leads to the release of damage-associated molecular patterns (DAMPs), which intensify the inflammatory response. β-Amyloid is a well-recognized DAMP in OA, can interact with APOE isoforms.</p><p><strong>Methods: </strong>This study identified DAMPs-related genes in OA using bioinformatics techniques. Additionally, we examined the expression levels of β-amyloid and apolipoprotein E (ApoE) isoforms by enzyme-linked immunosorbent assay.</p><p><strong>Results: </strong>We identified 10 key genes by machine learning techniques. Immune infiltration analysis revealed upregulation of various immune cell types in OA cartilage, underscoring the critical role of inflammation in OA pathogenesis. In the validation study, elevated serum levels of β-amyloid in knee osteoarthritis (KOA) patients were confirmed, showing positive correlations with ApoE2 and ApoE4. Notably, ApoE3 was identified as an independent protective factor against KOA.</p><p><strong>Conclusion: </strong>In this bioinformatics analysis, we identified the DAMPs-related genes of KOA and explored their potential functions and regulatory networks. The high expression of β-amyloid in KOA was confirmed by experiments, and the correlation between β-amyloid and ApoE2, ApoE4 in KOA was revealed for the first time, this provides a new way to explore the pathogenesis of KOA and to study the therapeutic targets of KOA.</p>\",\"PeriodicalId\":16113,\"journal\":{\"name\":\"Journal of Innate Immunity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521507/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Innate Immunity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1159/000541542\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innate Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000541542","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
简介骨关节炎(OA)是一种常见的慢性关节疾病。它的特点是在整个病程发展过程中,免疫反应会维持在一个较低的炎症水平。在 OA 过程中,软骨降解会导致损伤相关分子模式(DAMPs)的释放,从而加剧炎症反应。β-淀粉样蛋白是OA中公认的DAMP,可与APOE同工酶相互作用:本研究利用生物信息学技术确定了 OA 中与 DAMPs 相关的基因。此外,我们还通过酶联免疫吸附试验检测了β-淀粉样蛋白和载脂蛋白E(ApoE)同工酶的表达水平:结果:我们通过机器学习技术确定了10个关键基因。免疫浸润分析显示,OA软骨中各种免疫细胞类型上调,凸显了炎症在OA发病机制中的关键作用。在验证研究中,膝骨关节炎(KOA)患者血清中β淀粉样蛋白水平升高得到证实,并与载脂蛋白E2和载脂蛋白E4呈正相关。值得注意的是,载脂蛋白E3被确定为KOA的独立保护因子:在这项生物信息学分析中,我们确定了 KOA 的 DAMPs 相关基因,并探索了它们的潜在功能和调控网络。实验证实了β-淀粉样蛋白在KOA中的高表达,并首次揭示了β-淀粉样蛋白与载脂蛋白E2、载脂蛋白E4在KOA中的相关性,这为探索KOA的发病机制和研究KOA的治疗靶点提供了一条新途径。
Analyzing the Role of Specific Damage-Associated Molecular Patterns-Related Genes in Osteoarthritis and Investigating the Association between β-Amyloid and Apolipoprotein E Isoforms.
Introduction: Osteoarthritis (OA) is a prevalent chronic joint disorder. It is characterized by an immune response that maintains a low level of inflammation throughout its progression. During OA, cartilage degradation leads to the release of damage-associated molecular patterns (DAMPs), which intensify the inflammatory response. β-Amyloid is a well-recognized DAMP in OA, can interact with APOE isoforms.
Methods: This study identified DAMPs-related genes in OA using bioinformatics techniques. Additionally, we examined the expression levels of β-amyloid and apolipoprotein E (ApoE) isoforms by enzyme-linked immunosorbent assay.
Results: We identified 10 key genes by machine learning techniques. Immune infiltration analysis revealed upregulation of various immune cell types in OA cartilage, underscoring the critical role of inflammation in OA pathogenesis. In the validation study, elevated serum levels of β-amyloid in knee osteoarthritis (KOA) patients were confirmed, showing positive correlations with ApoE2 and ApoE4. Notably, ApoE3 was identified as an independent protective factor against KOA.
Conclusion: In this bioinformatics analysis, we identified the DAMPs-related genes of KOA and explored their potential functions and regulatory networks. The high expression of β-amyloid in KOA was confirmed by experiments, and the correlation between β-amyloid and ApoE2, ApoE4 in KOA was revealed for the first time, this provides a new way to explore the pathogenesis of KOA and to study the therapeutic targets of KOA.
期刊介绍:
The ''Journal of Innate Immunity'' is a bimonthly journal covering all aspects within the area of innate immunity, including evolution of the immune system, molecular biology of cells involved in innate immunity, pattern recognition and signals of ‘danger’, microbial corruption, host response and inflammation, mucosal immunity, complement and coagulation, sepsis and septic shock, molecular genomics, and development of immunotherapies. The journal publishes original research articles, short communications, reviews, commentaries and letters to the editors. In addition to regular papers, some issues feature a special section with a thematic focus.