Yea-Lim Lee, Ji-Yun Lee, Joo-Woong Park, Jin Ree, Hyun-Hoo Lee, Dae-Hee Lee
{"title":"脆弱钠提取物对对乙酰氨基酚引起的肝损伤的保护作用","authors":"Yea-Lim Lee, Ji-Yun Lee, Joo-Woong Park, Jin Ree, Hyun-Hoo Lee, Dae-Hee Lee","doi":"10.4014/jmb.2409.09061","DOIUrl":null,"url":null,"abstract":"<p><p>Acetaminophen (APAP) is a well-known analgesic used globally. Generally, APAP has been proven to be safe and effective at therapeutic doses; however, it can cause serious liver damage when administered at high levels. We prepared <i>Codium fragile</i> extract (CFE) using the seaweed <i>C. fragile</i> and confirmed that the CFE contains a substance called Loliolide with antioxidant activity. We performed the present study to determine whether CFE protects HEPG2 cells and BALB/c mice from oxidative stress-induced liver damage. We confirmed that CFE and Loliolide were non-cytotoxic and protected against liver damage by reducing the activities of ALT and AST, which were increased by APAP treatment, and that CFE reduced the mRNA expression of inflammatory cytokines TNF-α and IL-6 and inhibited the phosphorylation of ERK and p38 in HEPG2 cells as determined by RT-PCR and Western blot analyses. Furthermore, the TNF-α and IL-6 levels, which were increased after APAP treatment in BALB/c mice, decreased after CFE treatment. Therefore, we demonstrated that CFE exerts a protective effect against APAP-induced liver injury by suppressing the inflammatory response through anti-inflammatory activity. Our findings provide new perspectives for developing functional foods that utilize seaweeds to improve liver function.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective Effects of <i>Codium fragile</i> Extract against Acetaminophen-Induced Liver Injury.\",\"authors\":\"Yea-Lim Lee, Ji-Yun Lee, Joo-Woong Park, Jin Ree, Hyun-Hoo Lee, Dae-Hee Lee\",\"doi\":\"10.4014/jmb.2409.09061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acetaminophen (APAP) is a well-known analgesic used globally. Generally, APAP has been proven to be safe and effective at therapeutic doses; however, it can cause serious liver damage when administered at high levels. We prepared <i>Codium fragile</i> extract (CFE) using the seaweed <i>C. fragile</i> and confirmed that the CFE contains a substance called Loliolide with antioxidant activity. We performed the present study to determine whether CFE protects HEPG2 cells and BALB/c mice from oxidative stress-induced liver damage. We confirmed that CFE and Loliolide were non-cytotoxic and protected against liver damage by reducing the activities of ALT and AST, which were increased by APAP treatment, and that CFE reduced the mRNA expression of inflammatory cytokines TNF-α and IL-6 and inhibited the phosphorylation of ERK and p38 in HEPG2 cells as determined by RT-PCR and Western blot analyses. Furthermore, the TNF-α and IL-6 levels, which were increased after APAP treatment in BALB/c mice, decreased after CFE treatment. Therefore, we demonstrated that CFE exerts a protective effect against APAP-induced liver injury by suppressing the inflammatory response through anti-inflammatory activity. Our findings provide new perspectives for developing functional foods that utilize seaweeds to improve liver function.</p>\",\"PeriodicalId\":16481,\"journal\":{\"name\":\"Journal of microbiology and biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of microbiology and biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.4014/jmb.2409.09061\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2409.09061","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Protective Effects of Codium fragile Extract against Acetaminophen-Induced Liver Injury.
Acetaminophen (APAP) is a well-known analgesic used globally. Generally, APAP has been proven to be safe and effective at therapeutic doses; however, it can cause serious liver damage when administered at high levels. We prepared Codium fragile extract (CFE) using the seaweed C. fragile and confirmed that the CFE contains a substance called Loliolide with antioxidant activity. We performed the present study to determine whether CFE protects HEPG2 cells and BALB/c mice from oxidative stress-induced liver damage. We confirmed that CFE and Loliolide were non-cytotoxic and protected against liver damage by reducing the activities of ALT and AST, which were increased by APAP treatment, and that CFE reduced the mRNA expression of inflammatory cytokines TNF-α and IL-6 and inhibited the phosphorylation of ERK and p38 in HEPG2 cells as determined by RT-PCR and Western blot analyses. Furthermore, the TNF-α and IL-6 levels, which were increased after APAP treatment in BALB/c mice, decreased after CFE treatment. Therefore, we demonstrated that CFE exerts a protective effect against APAP-induced liver injury by suppressing the inflammatory response through anti-inflammatory activity. Our findings provide new perspectives for developing functional foods that utilize seaweeds to improve liver function.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.