{"title":"金属氧化物铁氧体在磁热效应过程中的作用 - 综述。","authors":"Santhiya R, A. Ruban Kumar","doi":"10.1016/j.jtherbio.2024.103936","DOIUrl":null,"url":null,"abstract":"<div><div>Extensive research has been conducted on the manufacturing of nano ferrites, and their use in magnetic hyperthermia therapy has shown promising results in cancer treatment. This study aims primarily to provide an overview of the latest developments in the synthesis of magnetic nanoparticles (MNPs) for the treatment of hyperthermia. Magnetic nanoparticles are biocompatible and have a stable magnetic state, nano ferrites have become recognized as apex thermoseeds in biomedical applications, specifically for the treatment of magnetic hyperthermia. Employing dopant materials, biocompatible overlay, and preparation techniques, one may study the effectiveness of nano ferrites. Furthermore, specific requirements need to be met for using nano ferrites in cancer treatments like magnetic hyperthermia. These include low toxicity, biocompatibility, a higher specific absorption rate, a shorter time to reach the targeted hyperthermia temperature, crystalline size within the biological radius, and a lower dose of the nano ferrite. A potential resolution involves identifying the limitations and proposing enhanced nanocomposite materials that amplify their magnetic characteristics via a biocompatible overlay, all while optimizing the effectiveness and functioning of magnetic nanoferrites. To increase the effectiveness of ferrite nanoparticles in treating hyperthermia, this study will figure out their constraints and offer solutions for more effective ferrite-based nanocomposites that may prove to be a viable therapy option for cancer in the future.</div></div>","PeriodicalId":17428,"journal":{"name":"Journal of thermal biology","volume":"125 ","pages":"Article 103936"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of metal oxide ferrites in the process of magnetic hyperthermia – A review\",\"authors\":\"Santhiya R, A. Ruban Kumar\",\"doi\":\"10.1016/j.jtherbio.2024.103936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Extensive research has been conducted on the manufacturing of nano ferrites, and their use in magnetic hyperthermia therapy has shown promising results in cancer treatment. This study aims primarily to provide an overview of the latest developments in the synthesis of magnetic nanoparticles (MNPs) for the treatment of hyperthermia. Magnetic nanoparticles are biocompatible and have a stable magnetic state, nano ferrites have become recognized as apex thermoseeds in biomedical applications, specifically for the treatment of magnetic hyperthermia. Employing dopant materials, biocompatible overlay, and preparation techniques, one may study the effectiveness of nano ferrites. Furthermore, specific requirements need to be met for using nano ferrites in cancer treatments like magnetic hyperthermia. These include low toxicity, biocompatibility, a higher specific absorption rate, a shorter time to reach the targeted hyperthermia temperature, crystalline size within the biological radius, and a lower dose of the nano ferrite. A potential resolution involves identifying the limitations and proposing enhanced nanocomposite materials that amplify their magnetic characteristics via a biocompatible overlay, all while optimizing the effectiveness and functioning of magnetic nanoferrites. To increase the effectiveness of ferrite nanoparticles in treating hyperthermia, this study will figure out their constraints and offer solutions for more effective ferrite-based nanocomposites that may prove to be a viable therapy option for cancer in the future.</div></div>\",\"PeriodicalId\":17428,\"journal\":{\"name\":\"Journal of thermal biology\",\"volume\":\"125 \",\"pages\":\"Article 103936\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of thermal biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0306456524001542\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of thermal biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306456524001542","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Role of metal oxide ferrites in the process of magnetic hyperthermia – A review
Extensive research has been conducted on the manufacturing of nano ferrites, and their use in magnetic hyperthermia therapy has shown promising results in cancer treatment. This study aims primarily to provide an overview of the latest developments in the synthesis of magnetic nanoparticles (MNPs) for the treatment of hyperthermia. Magnetic nanoparticles are biocompatible and have a stable magnetic state, nano ferrites have become recognized as apex thermoseeds in biomedical applications, specifically for the treatment of magnetic hyperthermia. Employing dopant materials, biocompatible overlay, and preparation techniques, one may study the effectiveness of nano ferrites. Furthermore, specific requirements need to be met for using nano ferrites in cancer treatments like magnetic hyperthermia. These include low toxicity, biocompatibility, a higher specific absorption rate, a shorter time to reach the targeted hyperthermia temperature, crystalline size within the biological radius, and a lower dose of the nano ferrite. A potential resolution involves identifying the limitations and proposing enhanced nanocomposite materials that amplify their magnetic characteristics via a biocompatible overlay, all while optimizing the effectiveness and functioning of magnetic nanoferrites. To increase the effectiveness of ferrite nanoparticles in treating hyperthermia, this study will figure out their constraints and offer solutions for more effective ferrite-based nanocomposites that may prove to be a viable therapy option for cancer in the future.
期刊介绍:
The Journal of Thermal Biology publishes articles that advance our knowledge on the ways and mechanisms through which temperature affects man and animals. This includes studies of their responses to these effects and on the ecological consequences. Directly relevant to this theme are:
• The mechanisms of thermal limitation, heat and cold injury, and the resistance of organisms to extremes of temperature
• The mechanisms involved in acclimation, acclimatization and evolutionary adaptation to temperature
• Mechanisms underlying the patterns of hibernation, torpor, dormancy, aestivation and diapause
• Effects of temperature on reproduction and development, growth, ageing and life-span
• Studies on modelling heat transfer between organisms and their environment
• The contributions of temperature to effects of climate change on animal species and man
• Studies of conservation biology and physiology related to temperature
• Behavioural and physiological regulation of body temperature including its pathophysiology and fever
• Medical applications of hypo- and hyperthermia
Article types:
• Original articles
• Review articles