SydR是瓜萎镰刀菌(Sinorhizobium meliloti)的一种氧化还原传感MarR型调节器,对共生感染美智子(Medicago truncatula)根部至关重要。

IF 5.1 1区 生物学 Q1 MICROBIOLOGY mBio Pub Date : 2024-10-31 DOI:10.1128/mbio.02275-24
Fanny Nazaret, Davoud Farajzadeh, Joffrey Mejias, Marie Pacoud, Anthony Cosi, Pierre Frendo, Geneviève Alloing, Karine Mandon
{"title":"SydR是瓜萎镰刀菌(Sinorhizobium meliloti)的一种氧化还原传感MarR型调节器,对共生感染美智子(Medicago truncatula)根部至关重要。","authors":"Fanny Nazaret, Davoud Farajzadeh, Joffrey Mejias, Marie Pacoud, Anthony Cosi, Pierre Frendo, Geneviève Alloing, Karine Mandon","doi":"10.1128/mbio.02275-24","DOIUrl":null,"url":null,"abstract":"<p><p>Rhizobia associate with legumes and induce the formation of nitrogen-fixing nodules. The regulation of bacterial redox state plays a major role in symbiosis, and reactive oxygen species produced by the plant are known to activate signaling pathways. However, only a few redox-sensing transcriptional regulators (TRs) have been characterized in the microsymbiont. Here, we describe SydR, a novel redox-sensing TR of <i>Sinorhizobium meliloti</i> that is essential for the establishment of symbiosis with <i>Medicago truncatula</i>. SydR, a MarR-type TR, represses the expression of the adjacent gene SMa2023 in growing cultures, and this repression is alleviated by NaOCl, <i>tert-</i>butyl hydroperoxide, or H<sub>2</sub>O<sub>2</sub> treatment. Transcriptional <i>psydR-gfp</i> and <i>p</i>SMa2023-<i>gfp</i> fusions, as well as gel shift assays, showed that SydR binds two independent sites of the <i>sydR</i>-SMa2023 intergenic region. This binding is redox-dependent, and site-directed mutagenesis demonstrated that the conserved C16 is essential for SydR redox sensing. The inactivation of <i>sydR</i> did not alter the sensitivity of <i>S. meliloti</i> to NaOCl, <i>tert</i>-butyl hydroperoxide, or H<sub>2</sub>O<sub>2</sub>, nor did it affect the response to oxidants of the roGFP2-Orp1 redox biosensor expressed within bacteria. However, <i>in planta</i>, Δ<i>sydR</i> mutation impaired the formation of root nodules. Microscopic observations and analyses of plant marker gene expression showed that the Δ<i>sydR</i> mutant is defective at an early stage of the bacterial infection process. Altogether, these results demonstrated that SydR is a redox-sensing MarR-type TR that plays a key role in the regulation of nitrogen-fixing symbiosis with <i>M. truncatula</i>.IMPORTANCEThe nitrogen-fixing symbiosis between rhizobia and legumes has an important ecological role in the nitrogen cycle, contributes to nitrogen enrichment of soils, and can improve plant growth in agriculture. This interaction is initiated in the rhizosphere by a molecular dialog between the two partners, resulting in plant root infection and the formation of root nodules, where bacteria reduce the atmospheric nitrogen into ammonium. This symbiosis involves modifications of the bacterial redox state in response to reactive oxygen species produced by the plant partner. Here, we show that SydR, a transcriptional regulator of the <i>Medicago</i> symbiont <i>Sinorhizobium meliloti</i>, acts as a redox-responsive repressor that is crucial for the development of root nodules and contributes to the regulation of bacterial infection in <i>S. meliloti/Medicago truncatula</i> symbiotic interaction.</p>","PeriodicalId":18315,"journal":{"name":"mBio","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SydR, a redox-sensing MarR-type regulator of <i>Sinorhizobium meliloti</i>, is crucial for symbiotic infection of <i>Medicago truncatula</i> roots.\",\"authors\":\"Fanny Nazaret, Davoud Farajzadeh, Joffrey Mejias, Marie Pacoud, Anthony Cosi, Pierre Frendo, Geneviève Alloing, Karine Mandon\",\"doi\":\"10.1128/mbio.02275-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rhizobia associate with legumes and induce the formation of nitrogen-fixing nodules. The regulation of bacterial redox state plays a major role in symbiosis, and reactive oxygen species produced by the plant are known to activate signaling pathways. However, only a few redox-sensing transcriptional regulators (TRs) have been characterized in the microsymbiont. Here, we describe SydR, a novel redox-sensing TR of <i>Sinorhizobium meliloti</i> that is essential for the establishment of symbiosis with <i>Medicago truncatula</i>. SydR, a MarR-type TR, represses the expression of the adjacent gene SMa2023 in growing cultures, and this repression is alleviated by NaOCl, <i>tert-</i>butyl hydroperoxide, or H<sub>2</sub>O<sub>2</sub> treatment. Transcriptional <i>psydR-gfp</i> and <i>p</i>SMa2023-<i>gfp</i> fusions, as well as gel shift assays, showed that SydR binds two independent sites of the <i>sydR</i>-SMa2023 intergenic region. This binding is redox-dependent, and site-directed mutagenesis demonstrated that the conserved C16 is essential for SydR redox sensing. The inactivation of <i>sydR</i> did not alter the sensitivity of <i>S. meliloti</i> to NaOCl, <i>tert</i>-butyl hydroperoxide, or H<sub>2</sub>O<sub>2</sub>, nor did it affect the response to oxidants of the roGFP2-Orp1 redox biosensor expressed within bacteria. However, <i>in planta</i>, Δ<i>sydR</i> mutation impaired the formation of root nodules. Microscopic observations and analyses of plant marker gene expression showed that the Δ<i>sydR</i> mutant is defective at an early stage of the bacterial infection process. Altogether, these results demonstrated that SydR is a redox-sensing MarR-type TR that plays a key role in the regulation of nitrogen-fixing symbiosis with <i>M. truncatula</i>.IMPORTANCEThe nitrogen-fixing symbiosis between rhizobia and legumes has an important ecological role in the nitrogen cycle, contributes to nitrogen enrichment of soils, and can improve plant growth in agriculture. This interaction is initiated in the rhizosphere by a molecular dialog between the two partners, resulting in plant root infection and the formation of root nodules, where bacteria reduce the atmospheric nitrogen into ammonium. This symbiosis involves modifications of the bacterial redox state in response to reactive oxygen species produced by the plant partner. Here, we show that SydR, a transcriptional regulator of the <i>Medicago</i> symbiont <i>Sinorhizobium meliloti</i>, acts as a redox-responsive repressor that is crucial for the development of root nodules and contributes to the regulation of bacterial infection in <i>S. meliloti/Medicago truncatula</i> symbiotic interaction.</p>\",\"PeriodicalId\":18315,\"journal\":{\"name\":\"mBio\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mBio\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/mbio.02275-24\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mBio","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/mbio.02275-24","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

根瘤菌与豆科植物结合并诱导固氮结节的形成。细菌氧化还原状态的调节在共生中起着重要作用,植物产生的活性氧可激活信号通路。然而,只有少数氧化还原感应转录调节因子(TRs)在微共生体中得到了表征。在这里,我们描述了一种新型的氧化还原感知转录调节因子 SydR,它是瓜萎镰刀菌(Sinorhizobium meliloti)与美迪西(Medicago truncatula)建立共生关系所必需的。SydR是一种MarR型TR,它能抑制生长培养物中相邻基因SMa2023的表达,NaOCl、叔丁基过氧化氢或H2O2处理可减轻这种抑制。转录 psydR-gfp 和 pSMa2023-gfp 融合以及凝胶转移试验表明,SydR 与 sydR-SMa2023 基因间区域的两个独立位点结合。这种结合是氧化还原依赖性的,定点突变证明保守的 C16 是 SydR 氧化还原感应的关键。sydR 失活不会改变 S. meliloti 对 NaOCl、叔丁基过氧化氢或 H2O2 的敏感性,也不会影响细菌内表达的 roGFP2-Orp1 氧化还原生物传感器对氧化剂的反应。然而,在植物体内,ΔsydR 突变会影响根瘤的形成。显微观察和植物标记基因表达分析表明,ΔsydR突变体在细菌感染过程的早期阶段存在缺陷。重要意义根瘤菌与豆科植物之间的固氮共生在氮循环中具有重要的生态作用,有助于土壤的氮富集,并能改善农业植物的生长。根瘤菌与豆科植物之间的这种相互作用是在根瘤层中通过双方的分子对话开始的,从而导致植物根部感染并形成根瘤,细菌在根瘤中将大气中的氮还原成铵。这种共生涉及细菌氧化还原状态的改变,以应对植物伙伴产生的活性氧。在这里,我们发现麦地那龙属共生菌的转录调节因子 SydR 是一种氧化还原反应抑制因子,对根瘤的发育至关重要,并有助于调节麦地那龙属/麦地那龙共生相互作用中的细菌感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SydR, a redox-sensing MarR-type regulator of Sinorhizobium meliloti, is crucial for symbiotic infection of Medicago truncatula roots.

Rhizobia associate with legumes and induce the formation of nitrogen-fixing nodules. The regulation of bacterial redox state plays a major role in symbiosis, and reactive oxygen species produced by the plant are known to activate signaling pathways. However, only a few redox-sensing transcriptional regulators (TRs) have been characterized in the microsymbiont. Here, we describe SydR, a novel redox-sensing TR of Sinorhizobium meliloti that is essential for the establishment of symbiosis with Medicago truncatula. SydR, a MarR-type TR, represses the expression of the adjacent gene SMa2023 in growing cultures, and this repression is alleviated by NaOCl, tert-butyl hydroperoxide, or H2O2 treatment. Transcriptional psydR-gfp and pSMa2023-gfp fusions, as well as gel shift assays, showed that SydR binds two independent sites of the sydR-SMa2023 intergenic region. This binding is redox-dependent, and site-directed mutagenesis demonstrated that the conserved C16 is essential for SydR redox sensing. The inactivation of sydR did not alter the sensitivity of S. meliloti to NaOCl, tert-butyl hydroperoxide, or H2O2, nor did it affect the response to oxidants of the roGFP2-Orp1 redox biosensor expressed within bacteria. However, in planta, ΔsydR mutation impaired the formation of root nodules. Microscopic observations and analyses of plant marker gene expression showed that the ΔsydR mutant is defective at an early stage of the bacterial infection process. Altogether, these results demonstrated that SydR is a redox-sensing MarR-type TR that plays a key role in the regulation of nitrogen-fixing symbiosis with M. truncatula.IMPORTANCEThe nitrogen-fixing symbiosis between rhizobia and legumes has an important ecological role in the nitrogen cycle, contributes to nitrogen enrichment of soils, and can improve plant growth in agriculture. This interaction is initiated in the rhizosphere by a molecular dialog between the two partners, resulting in plant root infection and the formation of root nodules, where bacteria reduce the atmospheric nitrogen into ammonium. This symbiosis involves modifications of the bacterial redox state in response to reactive oxygen species produced by the plant partner. Here, we show that SydR, a transcriptional regulator of the Medicago symbiont Sinorhizobium meliloti, acts as a redox-responsive repressor that is crucial for the development of root nodules and contributes to the regulation of bacterial infection in S. meliloti/Medicago truncatula symbiotic interaction.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mBio
mBio MICROBIOLOGY-
CiteScore
10.50
自引率
3.10%
发文量
762
审稿时长
1 months
期刊介绍: mBio® is ASM''s first broad-scope, online-only, open access journal. mBio offers streamlined review and publication of the best research in microbiology and allied fields.
期刊最新文献
Cryo-EM structure of the Mycobacterium smegmatis MmpL5-AcpM complex. Emerging mosquito-borne flaviviruses. Performance of rapid antigen tests to detect SARS-CoV-2 variant diversity and correlation with viral culture positivity: implication for diagnostic development and future public health strategies. SydR, a redox-sensing MarR-type regulator of Sinorhizobium meliloti, is crucial for symbiotic infection of Medicago truncatula roots. Aminoglycoside heteroresistance in Enterobacter cloacae is driven by the cell envelope stress response.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1