Zhenxiang Qi, Bowen Wang, Zhaoyang Zhai, Zheng Wang, Xingyin Xiong, Wuhao Yang, Xiaorui Bie, Yao Wang, Xudong Zou
{"title":"压电效应和静电效应的桥梁:具有低于 10°/h 偏置不稳定性的新型压电-MEMS俯仰/滚动陀螺仪。","authors":"Zhenxiang Qi, Bowen Wang, Zhaoyang Zhai, Zheng Wang, Xingyin Xiong, Wuhao Yang, Xiaorui Bie, Yao Wang, Xudong Zou","doi":"10.1038/s41378-024-00773-7","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a novel piezo-MEMS pitch/roll gyroscope that co-integrates piezoelectric and electrostatic effects, for the first time achieves electrostatic mode-matching operation for piezoelectric gyroscopes. Movement of operated out-of-plane (OOP) mode (n = 3) and in-plane (IP) mode (n = 2) are orthogonal, ensuring that the OOP amplitude is not significantly limited by parallel plates set at nodes of IP mode. Therefore, a large OOP driving amplitude actuated by piezoelectric and frequency tuning in the IP sense mode trimmed by electrostatic can be achieved together with a low risk of pull-in, hence releases the trade-off between the tuning range and the linear actuation range. At a tuning voltage of 66 V, the frequency split decreased from 171 Hz to 0.1 Hz, resulting in a 167x times improvement in sensitivity. The mode-matched gyroscope exhibits an angle random walk (ARW) of 0.41°/√h and a bias instability (BI) of 8.85°/h on a test board within a customized vacuum chamber, marking enhancements of 68x and 301x, respectively, compared to its performance under mode-mismatch conditions. The BI performance of the presented pitch/roll gyroscope is comparable to that of the highest-performing mechanically trimmed piezo-MEMS yaw gyroscopes known to date, while offering the unique advantage of lower cost, better mode-matching resolution, and the flexibility of real-time frequency control.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"10 1","pages":"160"},"PeriodicalIF":7.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522469/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bridging piezoelectric and electrostatic effects: a novel piezo-MEMS pitch/roll gyroscope with sub 10°/h bias instability.\",\"authors\":\"Zhenxiang Qi, Bowen Wang, Zhaoyang Zhai, Zheng Wang, Xingyin Xiong, Wuhao Yang, Xiaorui Bie, Yao Wang, Xudong Zou\",\"doi\":\"10.1038/s41378-024-00773-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This paper proposes a novel piezo-MEMS pitch/roll gyroscope that co-integrates piezoelectric and electrostatic effects, for the first time achieves electrostatic mode-matching operation for piezoelectric gyroscopes. Movement of operated out-of-plane (OOP) mode (n = 3) and in-plane (IP) mode (n = 2) are orthogonal, ensuring that the OOP amplitude is not significantly limited by parallel plates set at nodes of IP mode. Therefore, a large OOP driving amplitude actuated by piezoelectric and frequency tuning in the IP sense mode trimmed by electrostatic can be achieved together with a low risk of pull-in, hence releases the trade-off between the tuning range and the linear actuation range. At a tuning voltage of 66 V, the frequency split decreased from 171 Hz to 0.1 Hz, resulting in a 167x times improvement in sensitivity. The mode-matched gyroscope exhibits an angle random walk (ARW) of 0.41°/√h and a bias instability (BI) of 8.85°/h on a test board within a customized vacuum chamber, marking enhancements of 68x and 301x, respectively, compared to its performance under mode-mismatch conditions. The BI performance of the presented pitch/roll gyroscope is comparable to that of the highest-performing mechanically trimmed piezo-MEMS yaw gyroscopes known to date, while offering the unique advantage of lower cost, better mode-matching resolution, and the flexibility of real-time frequency control.</p>\",\"PeriodicalId\":18560,\"journal\":{\"name\":\"Microsystems & Nanoengineering\",\"volume\":\"10 1\",\"pages\":\"160\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522469/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystems & Nanoengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1038/s41378-024-00773-7\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-024-00773-7","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
Bridging piezoelectric and electrostatic effects: a novel piezo-MEMS pitch/roll gyroscope with sub 10°/h bias instability.
This paper proposes a novel piezo-MEMS pitch/roll gyroscope that co-integrates piezoelectric and electrostatic effects, for the first time achieves electrostatic mode-matching operation for piezoelectric gyroscopes. Movement of operated out-of-plane (OOP) mode (n = 3) and in-plane (IP) mode (n = 2) are orthogonal, ensuring that the OOP amplitude is not significantly limited by parallel plates set at nodes of IP mode. Therefore, a large OOP driving amplitude actuated by piezoelectric and frequency tuning in the IP sense mode trimmed by electrostatic can be achieved together with a low risk of pull-in, hence releases the trade-off between the tuning range and the linear actuation range. At a tuning voltage of 66 V, the frequency split decreased from 171 Hz to 0.1 Hz, resulting in a 167x times improvement in sensitivity. The mode-matched gyroscope exhibits an angle random walk (ARW) of 0.41°/√h and a bias instability (BI) of 8.85°/h on a test board within a customized vacuum chamber, marking enhancements of 68x and 301x, respectively, compared to its performance under mode-mismatch conditions. The BI performance of the presented pitch/roll gyroscope is comparable to that of the highest-performing mechanically trimmed piezo-MEMS yaw gyroscopes known to date, while offering the unique advantage of lower cost, better mode-matching resolution, and the flexibility of real-time frequency control.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.