尽管存在非生物胁迫,豆类种子微生物群仍能稳定、多代传递。

IF 5 2区 生物学 Q1 MICROBIOLOGY mSystems Pub Date : 2024-10-30 DOI:10.1128/msystems.00951-24
Abby Sulesky-Grieb, Marie Simonin, A Fina Bintarti, Brice Marolleau, Matthieu Barret, Ashley Shade
{"title":"尽管存在非生物胁迫,豆类种子微生物群仍能稳定、多代传递。","authors":"Abby Sulesky-Grieb, Marie Simonin, A Fina Bintarti, Brice Marolleau, Matthieu Barret, Ashley Shade","doi":"10.1128/msystems.00951-24","DOIUrl":null,"url":null,"abstract":"<p><p>Microbiota that originate in the seed can have consequences for the education of the plant immune system, competitive exclusion of pathogens from the host tissue, and host access to critical nutrients. Our research objective was to investigate the consequences of the environmental conditions of the parent plant for bacterial seed microbiome assembly and transmission across plant generations. Using a fully factorial, three-generational experimental design, we investigated endophytic seed bacterial communities of common bean lines (<i>Phaseolus vulgaris</i> L.) grown in the growth chamber and exposed to either control conditions, drought, or excess nutrients at each generation. We applied 16S rRNA microbiome profiling to the seed endophytes and measured plant health outcomes. We discovered stable transmission of 22 bacterial members, regardless of the parental plant condition. This study shows the maintenance of bacterial members of the plant microbiome across generations, even under environmental stress. Overall, this work provides insights into the ability of plants to safeguard microbiome members, which has implications for crop microbiome management in the face of climate change.IMPORTANCESeed microbiomes initiate plant microbiome assembly and thus have critical implications for the healthy development and performance of crops. However, the consequences of environmental conditions of the parent plant for seed microbiome assembly and transmission are unknown, but this is critical information, given the intensifying stressors that crops face as the climate crisis accelerates. This study provides insights into the maintenance of plant microbiomes across generations, with implications for durable plant microbiome maintenance in agriculture on the changing planet.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable, multigenerational transmission of the bean seed microbiome despite abiotic stress.\",\"authors\":\"Abby Sulesky-Grieb, Marie Simonin, A Fina Bintarti, Brice Marolleau, Matthieu Barret, Ashley Shade\",\"doi\":\"10.1128/msystems.00951-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microbiota that originate in the seed can have consequences for the education of the plant immune system, competitive exclusion of pathogens from the host tissue, and host access to critical nutrients. Our research objective was to investigate the consequences of the environmental conditions of the parent plant for bacterial seed microbiome assembly and transmission across plant generations. Using a fully factorial, three-generational experimental design, we investigated endophytic seed bacterial communities of common bean lines (<i>Phaseolus vulgaris</i> L.) grown in the growth chamber and exposed to either control conditions, drought, or excess nutrients at each generation. We applied 16S rRNA microbiome profiling to the seed endophytes and measured plant health outcomes. We discovered stable transmission of 22 bacterial members, regardless of the parental plant condition. This study shows the maintenance of bacterial members of the plant microbiome across generations, even under environmental stress. Overall, this work provides insights into the ability of plants to safeguard microbiome members, which has implications for crop microbiome management in the face of climate change.IMPORTANCESeed microbiomes initiate plant microbiome assembly and thus have critical implications for the healthy development and performance of crops. However, the consequences of environmental conditions of the parent plant for seed microbiome assembly and transmission are unknown, but this is critical information, given the intensifying stressors that crops face as the climate crisis accelerates. This study provides insights into the maintenance of plant microbiomes across generations, with implications for durable plant microbiome maintenance in agriculture on the changing planet.</p>\",\"PeriodicalId\":18819,\"journal\":{\"name\":\"mSystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msystems.00951-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.00951-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

起源于种子的微生物群会影响植物免疫系统的教育、宿主组织对病原体的竞争性排斥以及宿主对关键营养物质的获取。我们的研究目标是调查母本植物的环境条件对细菌种子微生物组的组装和植物跨代传播的影响。我们采用全因子三代实验设计,研究了在生长室中生长的普通豆类品系(Phaseolus vulgaris L.)的内生种子细菌群落,每一代都暴露在对照条件、干旱或过量养分下。我们对种子内生菌进行了 16S rRNA 微生物组分析,并测量了植物健康结果。我们发现,无论亲本植物的状况如何,都有 22 种细菌成员在稳定传播。这项研究表明,即使在环境压力下,植物微生物组中的细菌成员也能跨代维持。重要意义种子微生物组启动了植物微生物组的组装,因此对作物的健康发育和表现有着至关重要的影响。然而,母本植物的环境条件对种子微生物组的组装和传播所产生的影响尚不清楚,但鉴于随着气候危机的加速,农作物所面临的压力日益加剧,这是至关重要的信息。这项研究为植物微生物组的跨代维持提供了见解,对在不断变化的地球上持久维持农业中的植物微生物组具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Stable, multigenerational transmission of the bean seed microbiome despite abiotic stress.

Microbiota that originate in the seed can have consequences for the education of the plant immune system, competitive exclusion of pathogens from the host tissue, and host access to critical nutrients. Our research objective was to investigate the consequences of the environmental conditions of the parent plant for bacterial seed microbiome assembly and transmission across plant generations. Using a fully factorial, three-generational experimental design, we investigated endophytic seed bacterial communities of common bean lines (Phaseolus vulgaris L.) grown in the growth chamber and exposed to either control conditions, drought, or excess nutrients at each generation. We applied 16S rRNA microbiome profiling to the seed endophytes and measured plant health outcomes. We discovered stable transmission of 22 bacterial members, regardless of the parental plant condition. This study shows the maintenance of bacterial members of the plant microbiome across generations, even under environmental stress. Overall, this work provides insights into the ability of plants to safeguard microbiome members, which has implications for crop microbiome management in the face of climate change.IMPORTANCESeed microbiomes initiate plant microbiome assembly and thus have critical implications for the healthy development and performance of crops. However, the consequences of environmental conditions of the parent plant for seed microbiome assembly and transmission are unknown, but this is critical information, given the intensifying stressors that crops face as the climate crisis accelerates. This study provides insights into the maintenance of plant microbiomes across generations, with implications for durable plant microbiome maintenance in agriculture on the changing planet.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
mSystems
mSystems Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍: mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.
期刊最新文献
Effect of combined probiotics and doxycycline therapy on the gut-skin axis in rosacea. Stable, multigenerational transmission of the bean seed microbiome despite abiotic stress. Antimicrobial and antibiofilm activity of human recombinant H1 histones against bacterial infections. Gut and oral microbial compositional differences in women with breast cancer, women with ductal carcinoma in situ, and healthy women. Metagenomic sequencing of CRISPRs as a new marker to aid in personal identification with low-biomass samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1