EB-SUN--果蝇中一种新的微管加端追踪蛋白

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-12-01 Epub Date: 2024-10-30 DOI:10.1091/mbc.E24-09-0402
Sun K Kim, Stephen L Rogers, Wen Lu, Brad S Lee, Vladimir I Gelfand
{"title":"EB-SUN--果蝇中一种新的微管加端追踪蛋白","authors":"Sun K Kim, Stephen L Rogers, Wen Lu, Brad S Lee, Vladimir I Gelfand","doi":"10.1091/mbc.E24-09-0402","DOIUrl":null,"url":null,"abstract":"<p><p>Microtubule (MT) regulation is essential for oocyte development. In <i>Drosophila</i>, MT stability, polarity, abundance, and orientation undergo dynamic changes across developmental stages. In our effort to identify novel microtubule-associated proteins that regulate MTs in the <i>Drosophila</i> ovary, we identified a previously uncharacterized gene, CG18190, which encodes a novel MT end-binding (EB) protein, which we propose to name EB-SUN. We show that EB-SUN colocalizes with EB1 at growing MT plus-ends in <i>Drosophila</i> S2 cells. Tissue-specific and developmental expression profiles from Paralog Explorer reveal that EB-SUN is predominantly expressed in the ovary and early embryos, while EB1 is ubiquitously expressed. Furthermore, as early as oocyte determination, EB-SUN comets are highly concentrated in oocytes during oogenesis. EB-SUN knockout (KO) results in decreased MT density at the onset of mid-oogenesis (stage 7) and delays oocyte growth during late mid-oogenesis (stage 9). Combining EB-SUN KO with EB1 knockdown (KD) in germ cells significantly further reduces MT density at stage 7. Hatching assays of single protein depletion reveal distinct roles for EB-SUN and EB1 in early embryogenesis, likely due to differences in their expression and binding partners. Notably, all eggs from EB-SUN KO/EB1 KD females fail to hatch, suggesting partial redundancy between these proteins.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EB-SUN, a new microtubule plus-end tracking protein in <i>Drosophila</i>.\",\"authors\":\"Sun K Kim, Stephen L Rogers, Wen Lu, Brad S Lee, Vladimir I Gelfand\",\"doi\":\"10.1091/mbc.E24-09-0402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Microtubule (MT) regulation is essential for oocyte development. In <i>Drosophila</i>, MT stability, polarity, abundance, and orientation undergo dynamic changes across developmental stages. In our effort to identify novel microtubule-associated proteins that regulate MTs in the <i>Drosophila</i> ovary, we identified a previously uncharacterized gene, CG18190, which encodes a novel MT end-binding (EB) protein, which we propose to name EB-SUN. We show that EB-SUN colocalizes with EB1 at growing MT plus-ends in <i>Drosophila</i> S2 cells. Tissue-specific and developmental expression profiles from Paralog Explorer reveal that EB-SUN is predominantly expressed in the ovary and early embryos, while EB1 is ubiquitously expressed. Furthermore, as early as oocyte determination, EB-SUN comets are highly concentrated in oocytes during oogenesis. EB-SUN knockout (KO) results in decreased MT density at the onset of mid-oogenesis (stage 7) and delays oocyte growth during late mid-oogenesis (stage 9). Combining EB-SUN KO with EB1 knockdown (KD) in germ cells significantly further reduces MT density at stage 7. Hatching assays of single protein depletion reveal distinct roles for EB-SUN and EB1 in early embryogenesis, likely due to differences in their expression and binding partners. Notably, all eggs from EB-SUN KO/EB1 KD females fail to hatch, suggesting partial redundancy between these proteins.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1091/mbc.E24-09-0402\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-09-0402","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

微管(MT)调节对卵母细胞的发育至关重要。在果蝇中,MT的稳定性、极性、丰度和定向在各个发育阶段都会发生动态变化。为了鉴定果蝇卵巢中调控MT的新型微管相关蛋白(MAPs),我们发现了一个之前未表征的基因CG18190,它编码一种新型MT末端结合(EB)蛋白,我们将其命名为EB-SUN。我们发现,在果蝇 S2 细胞中,EB-SUN 与 EB1 共同定位在生长的微管加端。Paralog Explorer 的组织特异性和发育表达谱显示,EB-SUN 主要在卵巢和早期胚胎中表达,而 EB1 则普遍表达。此外,早在卵母细胞形成过程中,EB-SUN 彗星就高度集中在卵母细胞中。EB-SUN 基因敲除(KO)会导致卵子发生中期(第 7 阶段)MT 密度下降,并延迟卵子发生中期晚期(第 9 阶段)的卵母细胞生长。将 EB-SUN KO 与生殖细胞中的 EB1 敲除(KD)相结合,可显著进一步降低第 7 阶段的 MT 密度。单个蛋白耗竭的孵化试验显示,EB-SUN 和 EB1 在早期胚胎发生过程中发挥着不同的作用,这可能是由于它们的表达和结合伙伴不同。值得注意的是,所有来自 EB-SUN KO/EB1 KD 雌性的卵都无法孵化,这表明这些蛋白之间存在部分冗余。媒体:见正文] [媒体:见正文] [媒体:见正文] [媒体:见正文] [媒体:见正文] [媒体:见正文]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EB-SUN, a new microtubule plus-end tracking protein in Drosophila.

Microtubule (MT) regulation is essential for oocyte development. In Drosophila, MT stability, polarity, abundance, and orientation undergo dynamic changes across developmental stages. In our effort to identify novel microtubule-associated proteins that regulate MTs in the Drosophila ovary, we identified a previously uncharacterized gene, CG18190, which encodes a novel MT end-binding (EB) protein, which we propose to name EB-SUN. We show that EB-SUN colocalizes with EB1 at growing MT plus-ends in Drosophila S2 cells. Tissue-specific and developmental expression profiles from Paralog Explorer reveal that EB-SUN is predominantly expressed in the ovary and early embryos, while EB1 is ubiquitously expressed. Furthermore, as early as oocyte determination, EB-SUN comets are highly concentrated in oocytes during oogenesis. EB-SUN knockout (KO) results in decreased MT density at the onset of mid-oogenesis (stage 7) and delays oocyte growth during late mid-oogenesis (stage 9). Combining EB-SUN KO with EB1 knockdown (KD) in germ cells significantly further reduces MT density at stage 7. Hatching assays of single protein depletion reveal distinct roles for EB-SUN and EB1 in early embryogenesis, likely due to differences in their expression and binding partners. Notably, all eggs from EB-SUN KO/EB1 KD females fail to hatch, suggesting partial redundancy between these proteins.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Vitamin B12: prevention of human beings from lethal diseases and its food application. Current status and obstacles of narrowing yield gaps of four major crops. Cold shock treatment alleviates pitting in sweet cherry fruit by enhancing antioxidant enzymes activity and regulating membrane lipid metabolism. Removal of proteins and lipids affects structure, in vitro digestion and physicochemical properties of rice flour modified by heat-moisture treatment. Investigating the impact of climate variables on the organic honey yield in Turkey using XGBoost machine learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1