Emily P. English, Rachel N. Swingler, Simran Patwa, Mehmet Tosun, James F. Howard Jr., Miloš D. Miljković, Christopher M. Jewell
{"title":"为自身免疫性疾病及其他疾病设计 CAR-T 疗法。","authors":"Emily P. English, Rachel N. Swingler, Simran Patwa, Mehmet Tosun, James F. Howard Jr., Miloš D. Miljković, Christopher M. Jewell","doi":"10.1126/scitranslmed.ado2084","DOIUrl":null,"url":null,"abstract":"<div >Chimeric antigen receptor–T cell (CAR-T) therapy has transformed the management of refractory hematological malignancies. Now that targeting pathogenic cells of interest with antigen-directed cytotoxic T lymphocytes is possible, the field is expanding the reach of CAR-T therapy beyond oncology. Recently, breakthrough progress has been made in the application of CAR-T technology to autoimmune diseases, exploiting the same validated targets that were used by pioneering CAR-T therapies in hematology. Here, we discuss recent advances and outcomes that are paving the way for extension to new therapeutic areas, including autoimmunity.</div>","PeriodicalId":21580,"journal":{"name":"Science Translational Medicine","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scitranslmed.ado2084","citationCount":"0","resultStr":"{\"title\":\"Engineering CAR-T therapies for autoimmune disease and beyond\",\"authors\":\"Emily P. English, Rachel N. Swingler, Simran Patwa, Mehmet Tosun, James F. Howard Jr., Miloš D. Miljković, Christopher M. Jewell\",\"doi\":\"10.1126/scitranslmed.ado2084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Chimeric antigen receptor–T cell (CAR-T) therapy has transformed the management of refractory hematological malignancies. Now that targeting pathogenic cells of interest with antigen-directed cytotoxic T lymphocytes is possible, the field is expanding the reach of CAR-T therapy beyond oncology. Recently, breakthrough progress has been made in the application of CAR-T technology to autoimmune diseases, exploiting the same validated targets that were used by pioneering CAR-T therapies in hematology. Here, we discuss recent advances and outcomes that are paving the way for extension to new therapeutic areas, including autoimmunity.</div>\",\"PeriodicalId\":21580,\"journal\":{\"name\":\"Science Translational Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/scitranslmed.ado2084\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Translational Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/scitranslmed.ado2084\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Translational Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/scitranslmed.ado2084","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
嵌合抗原受体-T 细胞(CAR-T)疗法改变了难治性血液恶性肿瘤的治疗方法。现在,利用抗原导向的细胞毒性 T 淋巴细胞靶向相关致病细胞已成为可能,CAR-T疗法的应用领域正扩展到肿瘤学以外。最近,CAR-T 技术在自身免疫性疾病中的应用取得了突破性进展,它利用了血液学领域先驱 CAR-T 疗法所使用的相同验证靶点。在这里,我们将讨论最近的进展和成果,这些进展和成果为扩展到包括自身免疫在内的新治疗领域铺平了道路。
Engineering CAR-T therapies for autoimmune disease and beyond
Chimeric antigen receptor–T cell (CAR-T) therapy has transformed the management of refractory hematological malignancies. Now that targeting pathogenic cells of interest with antigen-directed cytotoxic T lymphocytes is possible, the field is expanding the reach of CAR-T therapy beyond oncology. Recently, breakthrough progress has been made in the application of CAR-T technology to autoimmune diseases, exploiting the same validated targets that were used by pioneering CAR-T therapies in hematology. Here, we discuss recent advances and outcomes that are paving the way for extension to new therapeutic areas, including autoimmunity.
期刊介绍:
Science Translational Medicine is an online journal that focuses on publishing research at the intersection of science, engineering, and medicine. The goal of the journal is to promote human health by providing a platform for researchers from various disciplines to communicate their latest advancements in biomedical, translational, and clinical research.
The journal aims to address the slow translation of scientific knowledge into effective treatments and health measures. It publishes articles that fill the knowledge gaps between preclinical research and medical applications, with a focus on accelerating the translation of knowledge into new ways of preventing, diagnosing, and treating human diseases.
The scope of Science Translational Medicine includes various areas such as cardiovascular disease, immunology/vaccines, metabolism/diabetes/obesity, neuroscience/neurology/psychiatry, cancer, infectious diseases, policy, behavior, bioengineering, chemical genomics/drug discovery, imaging, applied physical sciences, medical nanotechnology, drug delivery, biomarkers, gene therapy/regenerative medicine, toxicology and pharmacokinetics, data mining, cell culture, animal and human studies, medical informatics, and other interdisciplinary approaches to medicine.
The target audience of the journal includes researchers and management in academia, government, and the biotechnology and pharmaceutical industries. It is also relevant to physician scientists, regulators, policy makers, investors, business developers, and funding agencies.