NEON-SD:从 NEON 离散回归激光雷达点云中提取的 30 米结构多样性产品。

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2024-10-29 DOI:10.1038/s41597-024-04018-0
Jianmin Wang, Dennis H Choi, Elizabeth LaRue, Jeff W Atkins, Jane R Foster, Jaclyn H Matthes, Robert T Fahey, Songlin Fei, Brady S Hardiman
{"title":"NEON-SD:从 NEON 离散回归激光雷达点云中提取的 30 米结构多样性产品。","authors":"Jianmin Wang, Dennis H Choi, Elizabeth LaRue, Jeff W Atkins, Jane R Foster, Jaclyn H Matthes, Robert T Fahey, Songlin Fei, Brady S Hardiman","doi":"10.1038/s41597-024-04018-0","DOIUrl":null,"url":null,"abstract":"<p><p>Structural diversity (SD) characterizes the volume and physical arrangement of biotic components in an ecosystem which control critical ecosystem functions and processes. LiDAR data provides detailed 3-D spatial position information of components and has been widely used to calculate SD. However, the intensive computation of SD metrics from extensive LiDAR datasets is time-consuming and challenging for researchers who lack access to high-performance computing resources. Moreover, a lack of understanding of LiDAR data and algorithms could lead to inconsistent SD metrics. Here, we developed a SD product using the Discrete-Return LiDAR Point Cloud from the NEON Aerial Observation Platform. This product provides SD metrics detailing height, density, openness, and complexity at a spatial resolution of 30 m, aligned to the Landsat grids, for 211 site-years for 45 Terrestrial NEON sites from 2013 to 2022. To accommodate various ecosystems with different understory heights, it includes three different cut-off heights (0.5 m, 2 m, and 5 m). This structural diversity product can enable various applications such as ecosystem productivity estimation and disturbance monitoring.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"11 1","pages":"1174"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522374/pdf/","citationCount":"0","resultStr":"{\"title\":\"NEON-SD: A 30-m Structural Diversity Product Derived from the NEON Discrete-Return LiDAR Point Cloud.\",\"authors\":\"Jianmin Wang, Dennis H Choi, Elizabeth LaRue, Jeff W Atkins, Jane R Foster, Jaclyn H Matthes, Robert T Fahey, Songlin Fei, Brady S Hardiman\",\"doi\":\"10.1038/s41597-024-04018-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structural diversity (SD) characterizes the volume and physical arrangement of biotic components in an ecosystem which control critical ecosystem functions and processes. LiDAR data provides detailed 3-D spatial position information of components and has been widely used to calculate SD. However, the intensive computation of SD metrics from extensive LiDAR datasets is time-consuming and challenging for researchers who lack access to high-performance computing resources. Moreover, a lack of understanding of LiDAR data and algorithms could lead to inconsistent SD metrics. Here, we developed a SD product using the Discrete-Return LiDAR Point Cloud from the NEON Aerial Observation Platform. This product provides SD metrics detailing height, density, openness, and complexity at a spatial resolution of 30 m, aligned to the Landsat grids, for 211 site-years for 45 Terrestrial NEON sites from 2013 to 2022. To accommodate various ecosystems with different understory heights, it includes three different cut-off heights (0.5 m, 2 m, and 5 m). This structural diversity product can enable various applications such as ecosystem productivity estimation and disturbance monitoring.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"11 1\",\"pages\":\"1174\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11522374/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-024-04018-0\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-024-04018-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

结构多样性(SD)描述了生态系统中生物成分的数量和物理排列,它们控制着生态系统的关键功能和过程。激光雷达数据可提供成分的详细三维空间位置信息,已被广泛用于计算结构多样性。然而,对于缺乏高性能计算资源的研究人员来说,从大量 LiDAR 数据集中密集计算 SD 指标既耗时又具有挑战性。此外,对激光雷达数据和算法缺乏了解也会导致标度指标不一致。在此,我们利用 NEON 空中观测平台的离散回归激光雷达点云开发了 SD 产品。该产品以30米的空间分辨率提供了2013年至2022年45个陆地NEON站点211个站点年的SD指标,包括高度、密度、开阔度和复杂性,并与大地遥感卫星网格对齐。为了适应具有不同林下高度的各种生态系统,它包括三种不同的截断高度(0.5 米、2 米和 5 米)。该结构多样性产品可用于生态系统生产力估算和干扰监测等多种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NEON-SD: A 30-m Structural Diversity Product Derived from the NEON Discrete-Return LiDAR Point Cloud.

Structural diversity (SD) characterizes the volume and physical arrangement of biotic components in an ecosystem which control critical ecosystem functions and processes. LiDAR data provides detailed 3-D spatial position information of components and has been widely used to calculate SD. However, the intensive computation of SD metrics from extensive LiDAR datasets is time-consuming and challenging for researchers who lack access to high-performance computing resources. Moreover, a lack of understanding of LiDAR data and algorithms could lead to inconsistent SD metrics. Here, we developed a SD product using the Discrete-Return LiDAR Point Cloud from the NEON Aerial Observation Platform. This product provides SD metrics detailing height, density, openness, and complexity at a spatial resolution of 30 m, aligned to the Landsat grids, for 211 site-years for 45 Terrestrial NEON sites from 2013 to 2022. To accommodate various ecosystems with different understory heights, it includes three different cut-off heights (0.5 m, 2 m, and 5 m). This structural diversity product can enable various applications such as ecosystem productivity estimation and disturbance monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
A continuous pursuit dataset for online deep learning-based EEG brain-computer interface. A dataset of venture capitalist types in China (1978-2021): A machine-human hybrid approach. A high-quality genome assembly of the Spectacled Fulvetta (Fulvetta ruficapilla) endemic to China. A Hyperspectral Reflectance Database of Plastic Debris with Different Fractional Abundance in River Systems. Annotated test-retest dataset of lung cancer CT scan images reconstructed at multiple imaging parameters.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1