Kayla M Mills, Amanda M Minton, Christina R Ferreira
{"title":"调整脂质体样本处理方法,使其适用于商业化饲养的公猪。","authors":"Kayla M Mills, Amanda M Minton, Christina R Ferreira","doi":"10.1093/tas/txae139","DOIUrl":null,"url":null,"abstract":"<p><p>Multiple reaction monitoring (MRM) profiling is a sensitive method of lipid screening that has the capability to distinguish between different fertility phenotypes in gilts. However, MRM profiling has not yet been utilized to evaluate fertility phenotypes in boars. Markers indicative of fertility status in boars would be valuable as inclusion of subfertile boars in breeding programs results in a loss of efficiency and negative economic consequences. In addition, semen samples for lipidomic analysis are transported in liquid nitrogen or on dry ice to suspend metabolic activity within the sperm cells, however, these cryopreservation techniques are not commonly available at commercial boar studs. Therefore, the objective of this study was to develop a method of sample processing for MRM profiling that suspends metabolic activity within semen without freezing the sample. Five, sexually mature boars of similar genetics enrolled in a commercial breeding program were collected for the study. Following collection, ejaculates were aliquoted into methanol to suspend metabolic activity and shipped to Purdue University overnight for lipid extraction. Lipids were extracted using the Bligh and Dyer method and MRM profiling was used for lipid screening. A total of 329 ion transitions (MRMs) related to lipids were detected with most lipids being characterized as plasma membrane lipids (74%) which were comprised of phosphatidylcholines (40%), ceramides (16%), phosphatidylethanolamines (11%), and phosphatidylserines (7%). acylcarnitines (AC) represented approximately 8% of the ejaculate lipidome. Hierarchical cluster and principal component analysis revealed that boars have a distinct ejaculate lipidome profile based on major plasma membrane lipid classes. In addition, we observed that one boar was unique in his abundance of AC which are related to progressive motility and sperm cell metabolism. These results indicate that this method of sample processing for MRM profiling is suitable to be used to evaluate the lipidome of ejaculates from commercial boars and has the potential for broader applications across different livestock species in commercial environments.</p>","PeriodicalId":23272,"journal":{"name":"Translational Animal Science","volume":"8 ","pages":"txae139"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521339/pdf/","citationCount":"0","resultStr":"{\"title\":\"Adapting lipidomic sample processing methods for boars housed in commercial settings.\",\"authors\":\"Kayla M Mills, Amanda M Minton, Christina R Ferreira\",\"doi\":\"10.1093/tas/txae139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Multiple reaction monitoring (MRM) profiling is a sensitive method of lipid screening that has the capability to distinguish between different fertility phenotypes in gilts. However, MRM profiling has not yet been utilized to evaluate fertility phenotypes in boars. Markers indicative of fertility status in boars would be valuable as inclusion of subfertile boars in breeding programs results in a loss of efficiency and negative economic consequences. In addition, semen samples for lipidomic analysis are transported in liquid nitrogen or on dry ice to suspend metabolic activity within the sperm cells, however, these cryopreservation techniques are not commonly available at commercial boar studs. Therefore, the objective of this study was to develop a method of sample processing for MRM profiling that suspends metabolic activity within semen without freezing the sample. Five, sexually mature boars of similar genetics enrolled in a commercial breeding program were collected for the study. Following collection, ejaculates were aliquoted into methanol to suspend metabolic activity and shipped to Purdue University overnight for lipid extraction. Lipids were extracted using the Bligh and Dyer method and MRM profiling was used for lipid screening. A total of 329 ion transitions (MRMs) related to lipids were detected with most lipids being characterized as plasma membrane lipids (74%) which were comprised of phosphatidylcholines (40%), ceramides (16%), phosphatidylethanolamines (11%), and phosphatidylserines (7%). acylcarnitines (AC) represented approximately 8% of the ejaculate lipidome. Hierarchical cluster and principal component analysis revealed that boars have a distinct ejaculate lipidome profile based on major plasma membrane lipid classes. In addition, we observed that one boar was unique in his abundance of AC which are related to progressive motility and sperm cell metabolism. These results indicate that this method of sample processing for MRM profiling is suitable to be used to evaluate the lipidome of ejaculates from commercial boars and has the potential for broader applications across different livestock species in commercial environments.</p>\",\"PeriodicalId\":23272,\"journal\":{\"name\":\"Translational Animal Science\",\"volume\":\"8 \",\"pages\":\"txae139\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521339/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Animal Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/tas/txae139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Animal Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/tas/txae139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Adapting lipidomic sample processing methods for boars housed in commercial settings.
Multiple reaction monitoring (MRM) profiling is a sensitive method of lipid screening that has the capability to distinguish between different fertility phenotypes in gilts. However, MRM profiling has not yet been utilized to evaluate fertility phenotypes in boars. Markers indicative of fertility status in boars would be valuable as inclusion of subfertile boars in breeding programs results in a loss of efficiency and negative economic consequences. In addition, semen samples for lipidomic analysis are transported in liquid nitrogen or on dry ice to suspend metabolic activity within the sperm cells, however, these cryopreservation techniques are not commonly available at commercial boar studs. Therefore, the objective of this study was to develop a method of sample processing for MRM profiling that suspends metabolic activity within semen without freezing the sample. Five, sexually mature boars of similar genetics enrolled in a commercial breeding program were collected for the study. Following collection, ejaculates were aliquoted into methanol to suspend metabolic activity and shipped to Purdue University overnight for lipid extraction. Lipids were extracted using the Bligh and Dyer method and MRM profiling was used for lipid screening. A total of 329 ion transitions (MRMs) related to lipids were detected with most lipids being characterized as plasma membrane lipids (74%) which were comprised of phosphatidylcholines (40%), ceramides (16%), phosphatidylethanolamines (11%), and phosphatidylserines (7%). acylcarnitines (AC) represented approximately 8% of the ejaculate lipidome. Hierarchical cluster and principal component analysis revealed that boars have a distinct ejaculate lipidome profile based on major plasma membrane lipid classes. In addition, we observed that one boar was unique in his abundance of AC which are related to progressive motility and sperm cell metabolism. These results indicate that this method of sample processing for MRM profiling is suitable to be used to evaluate the lipidome of ejaculates from commercial boars and has the potential for broader applications across different livestock species in commercial environments.
期刊介绍:
Translational Animal Science (TAS) is the first open access-open review animal science journal, encompassing a broad scope of research topics in animal science. TAS focuses on translating basic science to innovation, and validation of these innovations by various segments of the allied animal industry. Readers of TAS will typically represent education, industry, and government, including research, teaching, administration, extension, management, quality assurance, product development, and technical services. Those interested in TAS typically include animal breeders, economists, embryologists, engineers, food scientists, geneticists, microbiologists, nutritionists, veterinarians, physiologists, processors, public health professionals, and others with an interest in animal production and applied aspects of animal sciences.