Roxanne S Beltran, A Marm Kilpatrick, Simona Picardi, Briana Abrahms, Gabriel M Barrile, William K Oestreich, Justine A Smith, Max F Czapanskiy, Arina B Favilla, Ryan R Reisinger, Jessica M Kendall-Bar, Allison R Payne, Matthew S Savoca, Danial G Palance, Samantha Andrzejaczek, Daphne M Shen, Taiki Adachi, Daniel P Costa, Natalie A Storm, Conner M Hale, Patrick W Robinson
{"title":"最大限度地利用附着在动物身上的仪器进行生物学研究。","authors":"Roxanne S Beltran, A Marm Kilpatrick, Simona Picardi, Briana Abrahms, Gabriel M Barrile, William K Oestreich, Justine A Smith, Max F Czapanskiy, Arina B Favilla, Ryan R Reisinger, Jessica M Kendall-Bar, Allison R Payne, Matthew S Savoca, Danial G Palance, Samantha Andrzejaczek, Daphne M Shen, Taiki Adachi, Daniel P Costa, Natalie A Storm, Conner M Hale, Patrick W Robinson","doi":"10.1016/j.tree.2024.09.009","DOIUrl":null,"url":null,"abstract":"<p><p>Instruments attached to animals ('biologgers') have facilitated extensive discoveries about the patterns, causes, and consequences of animal behavior. Here, we present examples of how biologging can deepen our fundamental understanding of ecosystems and our applied understanding of global change impacts by enabling tests of ecological theory. Applying the iterative process of science to biologging has enabled a diverse set of insights, including social and experiential learning in long-distance migrants, state-dependent risk aversion in foraging predators, and resource abundance driving movement across taxa. Now, biologging is poised to tackle questions and refine ecological theories at increasing levels of complexity by integrating measurements from numerous individuals, merging datasets from multiple species and their environments, and spanning disciplines, including physiology, behavior and demography.</p>","PeriodicalId":23274,"journal":{"name":"Trends in ecology & evolution","volume":null,"pages":null},"PeriodicalIF":16.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Maximizing biological insights from instruments attached to animals.\",\"authors\":\"Roxanne S Beltran, A Marm Kilpatrick, Simona Picardi, Briana Abrahms, Gabriel M Barrile, William K Oestreich, Justine A Smith, Max F Czapanskiy, Arina B Favilla, Ryan R Reisinger, Jessica M Kendall-Bar, Allison R Payne, Matthew S Savoca, Danial G Palance, Samantha Andrzejaczek, Daphne M Shen, Taiki Adachi, Daniel P Costa, Natalie A Storm, Conner M Hale, Patrick W Robinson\",\"doi\":\"10.1016/j.tree.2024.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Instruments attached to animals ('biologgers') have facilitated extensive discoveries about the patterns, causes, and consequences of animal behavior. Here, we present examples of how biologging can deepen our fundamental understanding of ecosystems and our applied understanding of global change impacts by enabling tests of ecological theory. Applying the iterative process of science to biologging has enabled a diverse set of insights, including social and experiential learning in long-distance migrants, state-dependent risk aversion in foraging predators, and resource abundance driving movement across taxa. Now, biologging is poised to tackle questions and refine ecological theories at increasing levels of complexity by integrating measurements from numerous individuals, merging datasets from multiple species and their environments, and spanning disciplines, including physiology, behavior and demography.</p>\",\"PeriodicalId\":23274,\"journal\":{\"name\":\"Trends in ecology & evolution\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in ecology & evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tree.2024.09.009\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in ecology & evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.tree.2024.09.009","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Maximizing biological insights from instruments attached to animals.
Instruments attached to animals ('biologgers') have facilitated extensive discoveries about the patterns, causes, and consequences of animal behavior. Here, we present examples of how biologging can deepen our fundamental understanding of ecosystems and our applied understanding of global change impacts by enabling tests of ecological theory. Applying the iterative process of science to biologging has enabled a diverse set of insights, including social and experiential learning in long-distance migrants, state-dependent risk aversion in foraging predators, and resource abundance driving movement across taxa. Now, biologging is poised to tackle questions and refine ecological theories at increasing levels of complexity by integrating measurements from numerous individuals, merging datasets from multiple species and their environments, and spanning disciplines, including physiology, behavior and demography.
期刊介绍:
Trends in Ecology & Evolution (TREE) is a comprehensive journal featuring polished, concise, and readable reviews, opinions, and letters in all areas of ecology and evolutionary science. Catering to researchers, lecturers, teachers, field workers, and students, it serves as a valuable source of information. The journal keeps scientists informed about new developments and ideas across the spectrum of ecology and evolutionary biology, spanning from pure to applied and molecular to global perspectives. In the face of global environmental change, Trends in Ecology & Evolution plays a crucial role in covering all significant issues concerning organisms and their environments, making it a major forum for life scientists.