北极隐藏的碳氢化合物降解微生物:研究碳氢化合物污染、生物刺激和表面清洗剂对高纬度北极海滩微生物群落和碳氢化合物生物降解途径的影响。

IF 6.2 2区 环境科学与生态学 Q1 GENETICS & HEREDITY Environmental Microbiome Pub Date : 2024-10-31 DOI:10.1186/s40793-024-00626-w
Ya-Jou Chen, Ianina Altshuler, Nastasia J Freyria, Antoine Lirette, Esteban Góngora, Charles W Greer, Lyle G Whyte
{"title":"北极隐藏的碳氢化合物降解微生物:研究碳氢化合物污染、生物刺激和表面清洗剂对高纬度北极海滩微生物群落和碳氢化合物生物降解途径的影响。","authors":"Ya-Jou Chen, Ianina Altshuler, Nastasia J Freyria, Antoine Lirette, Esteban Góngora, Charles W Greer, Lyle G Whyte","doi":"10.1186/s40793-024-00626-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Canadian Arctic summer sea ice has dramatically declined due to global warming, resulting in the rapid opening of the Northwest Passage (NWP), slated to be a major shipping route connecting the Atlantic and Pacific Oceans by 2040. This development elevates the risk of oil spills in Arctic regions, prompting growing concerns over the remediation and minimizing the impact on affected shorelines.</p><p><strong>Results: </strong>This research aims to assess the viability of nutrient and a surface washing agent addition as potential bioremediation methods for Arctic beaches. To achieve this goal, we conducted two semi-automated mesocosm experiments simulating hydrocarbon contamination in high-Arctic beach tidal sediments: a 32-day experiment at 8 °C and a 92-day experiment at 4 °C. We analyzed the effects of hydrocarbon contamination, biostimulation, and a surface washing agent on the microbial community and its functional capacity using 16S rRNA gene sequencing and metagenomics. Hydrocarbon removal rates were determined through total petroleum hydrocarbon analysis. Biostimulation is commonly considered the most effective strategy for enhancing the bioremediation process in response to oil contamination. However, our findings suggest that nutrient addition has limited effectiveness in facilitating the biodegradation process in Arctic beaches, despite its initial promotion of aliphatic hydrocarbons within a constrained timeframe. Alternatively, our study highlights the promise of a surface washing agent as a potential bioremediation approach. By implementing advanced -omics approaches, we unveiled highly proficient, unconventional hydrocarbon-degrading microorganisms such as Halioglobus and Acidimicrobiales genera.</p><p><strong>Conclusions: </strong>Given the receding Arctic sea ice and the rising traffic in the NWP, heightened awareness and preparedness for potential oil spills are imperative. While continuously exploring optimal remediation strategies through the integration of microbial and chemical studies, a paramount consideration involves limiting traffic in the NWP and Arctic regions to prevent beach oil contamination, as cleanup in these remote areas proves exceedingly challenging and costly.</p>","PeriodicalId":48553,"journal":{"name":"Environmental Microbiome","volume":"19 1","pages":"81"},"PeriodicalIF":6.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526595/pdf/","citationCount":"0","resultStr":"{\"title\":\"Arctic's hidden hydrocarbon degradation microbes: investigating the effects of hydrocarbon contamination, biostimulation, and a surface washing agent on microbial communities and hydrocarbon biodegradation pathways in high-Arctic beaches.\",\"authors\":\"Ya-Jou Chen, Ianina Altshuler, Nastasia J Freyria, Antoine Lirette, Esteban Góngora, Charles W Greer, Lyle G Whyte\",\"doi\":\"10.1186/s40793-024-00626-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Canadian Arctic summer sea ice has dramatically declined due to global warming, resulting in the rapid opening of the Northwest Passage (NWP), slated to be a major shipping route connecting the Atlantic and Pacific Oceans by 2040. This development elevates the risk of oil spills in Arctic regions, prompting growing concerns over the remediation and minimizing the impact on affected shorelines.</p><p><strong>Results: </strong>This research aims to assess the viability of nutrient and a surface washing agent addition as potential bioremediation methods for Arctic beaches. To achieve this goal, we conducted two semi-automated mesocosm experiments simulating hydrocarbon contamination in high-Arctic beach tidal sediments: a 32-day experiment at 8 °C and a 92-day experiment at 4 °C. We analyzed the effects of hydrocarbon contamination, biostimulation, and a surface washing agent on the microbial community and its functional capacity using 16S rRNA gene sequencing and metagenomics. Hydrocarbon removal rates were determined through total petroleum hydrocarbon analysis. Biostimulation is commonly considered the most effective strategy for enhancing the bioremediation process in response to oil contamination. However, our findings suggest that nutrient addition has limited effectiveness in facilitating the biodegradation process in Arctic beaches, despite its initial promotion of aliphatic hydrocarbons within a constrained timeframe. Alternatively, our study highlights the promise of a surface washing agent as a potential bioremediation approach. By implementing advanced -omics approaches, we unveiled highly proficient, unconventional hydrocarbon-degrading microorganisms such as Halioglobus and Acidimicrobiales genera.</p><p><strong>Conclusions: </strong>Given the receding Arctic sea ice and the rising traffic in the NWP, heightened awareness and preparedness for potential oil spills are imperative. While continuously exploring optimal remediation strategies through the integration of microbial and chemical studies, a paramount consideration involves limiting traffic in the NWP and Arctic regions to prevent beach oil contamination, as cleanup in these remote areas proves exceedingly challenging and costly.</p>\",\"PeriodicalId\":48553,\"journal\":{\"name\":\"Environmental Microbiome\",\"volume\":\"19 1\",\"pages\":\"81\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526595/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Microbiome\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1186/s40793-024-00626-w\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Microbiome","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1186/s40793-024-00626-w","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

背景:由于全球变暖,加拿大北极地区夏季海冰急剧减少,导致西北航道(NWP)迅速开放,预计到 2040 年,西北航道将成为连接大西洋和太平洋的主要航道。这一发展提高了北极地区发生石油泄漏的风险,促使人们越来越关注受影响海岸线的补救和影响最小化问题:本研究旨在评估添加营养物和表面清洗剂作为北极海滩潜在生物修复方法的可行性。为了实现这一目标,我们进行了两次半自动中观实验,模拟高纬度北极海滩潮汐沉积物中的碳氢化合物污染:一次是在 8 °C 下进行的为期 32 天的实验,另一次是在 4 °C 下进行的为期 92 天的实验。我们利用 16S rRNA 基因测序和元基因组学分析了碳氢化合物污染、生物刺激和表面清洗剂对微生物群落及其功能能力的影响。碳氢化合物去除率是通过总石油碳氢化合物分析确定的。生物刺激通常被认为是针对石油污染加强生物修复过程的最有效策略。然而,我们的研究结果表明,尽管在有限的时间内添加营养物质能初步促进脂肪族碳氢化合物的降解,但其在促进北极海滩生物降解过程中的效果有限。另外,我们的研究还强调了表面清洗剂作为一种潜在生物修复方法的前景。通过采用先进的组学方法,我们发现了高度熟练的非常规碳氢化合物降解微生物,如 Halioglobus 和 Acidimicrobiales 属:鉴于北极海冰的消退和西北太平洋流量的增加,提高对潜在石油泄漏的认识并做好准备势在必行。在通过整合微生物和化学研究不断探索最佳补救策略的同时,一个最重要的考虑因素是限制西北太平洋和北极地区的交通,以防止海滩油类污染,因为在这些偏远地区进行清理极具挑战性且成本高昂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Arctic's hidden hydrocarbon degradation microbes: investigating the effects of hydrocarbon contamination, biostimulation, and a surface washing agent on microbial communities and hydrocarbon biodegradation pathways in high-Arctic beaches.

Background: Canadian Arctic summer sea ice has dramatically declined due to global warming, resulting in the rapid opening of the Northwest Passage (NWP), slated to be a major shipping route connecting the Atlantic and Pacific Oceans by 2040. This development elevates the risk of oil spills in Arctic regions, prompting growing concerns over the remediation and minimizing the impact on affected shorelines.

Results: This research aims to assess the viability of nutrient and a surface washing agent addition as potential bioremediation methods for Arctic beaches. To achieve this goal, we conducted two semi-automated mesocosm experiments simulating hydrocarbon contamination in high-Arctic beach tidal sediments: a 32-day experiment at 8 °C and a 92-day experiment at 4 °C. We analyzed the effects of hydrocarbon contamination, biostimulation, and a surface washing agent on the microbial community and its functional capacity using 16S rRNA gene sequencing and metagenomics. Hydrocarbon removal rates were determined through total petroleum hydrocarbon analysis. Biostimulation is commonly considered the most effective strategy for enhancing the bioremediation process in response to oil contamination. However, our findings suggest that nutrient addition has limited effectiveness in facilitating the biodegradation process in Arctic beaches, despite its initial promotion of aliphatic hydrocarbons within a constrained timeframe. Alternatively, our study highlights the promise of a surface washing agent as a potential bioremediation approach. By implementing advanced -omics approaches, we unveiled highly proficient, unconventional hydrocarbon-degrading microorganisms such as Halioglobus and Acidimicrobiales genera.

Conclusions: Given the receding Arctic sea ice and the rising traffic in the NWP, heightened awareness and preparedness for potential oil spills are imperative. While continuously exploring optimal remediation strategies through the integration of microbial and chemical studies, a paramount consideration involves limiting traffic in the NWP and Arctic regions to prevent beach oil contamination, as cleanup in these remote areas proves exceedingly challenging and costly.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environmental Microbiome
Environmental Microbiome Immunology and Microbiology-Microbiology
CiteScore
7.40
自引率
2.50%
发文量
55
审稿时长
13 weeks
期刊介绍: Microorganisms, omnipresent across Earth's diverse environments, play a crucial role in adapting to external changes, influencing Earth's systems and cycles, and contributing significantly to agricultural practices. Through applied microbiology, they offer solutions to various everyday needs. Environmental Microbiome recognizes the universal presence and significance of microorganisms, inviting submissions that explore the diverse facets of environmental and applied microbiological research.
期刊最新文献
Phage-induced disturbance of a marine sponge microbiome. Exploring the biosynthesis potential of permafrost microbiomes. Soil properties drive nitrous oxide accumulation patterns by shaping denitrifying bacteriomes. Metatranscriptomics of microbial biofilm succession on HDPE foil: uncovering plastic-degrading potential in soil communities. Stochasticity-dominated rare fungal endophytes contribute to coexistence stability and saponin accumulation in Panax species.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1