高分辨率空间转录组学临床转化的挑战与机遇。

Tancredi Massimo Pentimalli, Nikos Karaiskos, Nikolaus Rajewsky
{"title":"高分辨率空间转录组学临床转化的挑战与机遇。","authors":"Tancredi Massimo Pentimalli, Nikos Karaiskos, Nikolaus Rajewsky","doi":"10.1146/annurev-pathmechdis-111523-023417","DOIUrl":null,"url":null,"abstract":"<p><p>Pathology has always been fueled by technological advances. Histology powered the study of tissue architecture at single-cell resolution and remains a cornerstone of clinical pathology today. In the last decade, next-generation sequencing has become informative for the targeted treatment of many diseases, demonstrating the importance of genome-scale molecular information for personalized medicine. Today, revolutionary developments in spatial transcriptomics technologies digitalize gene expression at subcellular resolution in intact tissue sections, enabling the computational analysis of cell types, cellular phenotypes, and cell-cell communication in routinely collected and archival clinical samples. Here we review how such molecular microscopes work, highlight their potential to identify disease mechanisms and guide personalized therapies, and provide guidance for clinical study design. Finally, we discuss remaining challenges to the swift translation of high-resolution spatial transcriptomics technologies and how integration of multimodal readouts and deep learning approaches is bringing us closer to a holistic understanding of tissue biology and pathology.</p>","PeriodicalId":50753,"journal":{"name":"Annual Review of Pathology-Mechanisms of Disease","volume":" ","pages":""},"PeriodicalIF":28.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Challenges and Opportunities in the Clinical Translation of High-Resolution Spatial Transcriptomics.\",\"authors\":\"Tancredi Massimo Pentimalli, Nikos Karaiskos, Nikolaus Rajewsky\",\"doi\":\"10.1146/annurev-pathmechdis-111523-023417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Pathology has always been fueled by technological advances. Histology powered the study of tissue architecture at single-cell resolution and remains a cornerstone of clinical pathology today. In the last decade, next-generation sequencing has become informative for the targeted treatment of many diseases, demonstrating the importance of genome-scale molecular information for personalized medicine. Today, revolutionary developments in spatial transcriptomics technologies digitalize gene expression at subcellular resolution in intact tissue sections, enabling the computational analysis of cell types, cellular phenotypes, and cell-cell communication in routinely collected and archival clinical samples. Here we review how such molecular microscopes work, highlight their potential to identify disease mechanisms and guide personalized therapies, and provide guidance for clinical study design. Finally, we discuss remaining challenges to the swift translation of high-resolution spatial transcriptomics technologies and how integration of multimodal readouts and deep learning approaches is bringing us closer to a holistic understanding of tissue biology and pathology.</p>\",\"PeriodicalId\":50753,\"journal\":{\"name\":\"Annual Review of Pathology-Mechanisms of Disease\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":28.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Review of Pathology-Mechanisms of Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-pathmechdis-111523-023417\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Pathology-Mechanisms of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1146/annurev-pathmechdis-111523-023417","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

病理学的发展始终离不开技术的进步。组织学推动了单细胞分辨率的组织结构研究,至今仍是临床病理学的基石。在过去十年中,新一代测序技术为许多疾病的靶向治疗提供了信息,证明了基因组规模的分子信息对个性化医疗的重要性。如今,空间转录组学技术的革命性发展将完整组织切片中亚细胞分辨率的基因表达数字化,从而能够对常规收集和存档临床样本中的细胞类型、细胞表型和细胞间通讯进行计算分析。在此,我们回顾了此类分子显微镜的工作原理,强调了它们在确定疾病机制和指导个性化疗法方面的潜力,并为临床研究设计提供了指导。最后,我们将讨论在快速转化高分辨率空间转录组学技术方面仍然存在的挑战,以及多模态读数和深度学习方法的整合如何使我们更接近于全面了解组织生物学和病理学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Challenges and Opportunities in the Clinical Translation of High-Resolution Spatial Transcriptomics.

Pathology has always been fueled by technological advances. Histology powered the study of tissue architecture at single-cell resolution and remains a cornerstone of clinical pathology today. In the last decade, next-generation sequencing has become informative for the targeted treatment of many diseases, demonstrating the importance of genome-scale molecular information for personalized medicine. Today, revolutionary developments in spatial transcriptomics technologies digitalize gene expression at subcellular resolution in intact tissue sections, enabling the computational analysis of cell types, cellular phenotypes, and cell-cell communication in routinely collected and archival clinical samples. Here we review how such molecular microscopes work, highlight their potential to identify disease mechanisms and guide personalized therapies, and provide guidance for clinical study design. Finally, we discuss remaining challenges to the swift translation of high-resolution spatial transcriptomics technologies and how integration of multimodal readouts and deep learning approaches is bringing us closer to a holistic understanding of tissue biology and pathology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
62.60
自引率
0.00%
发文量
40
期刊介绍: The Annual Review of Pathology: Mechanisms of Disease is a scholarly journal that has been published since 2006. Its primary focus is to provide a comprehensive overview of recent advancements in our knowledge of the causes and development of significant human diseases. The journal places particular emphasis on exploring the current and evolving concepts of disease pathogenesis, as well as the molecular genetic and morphological changes associated with various diseases. Additionally, the journal addresses the clinical significance of these findings. In order to increase accessibility and promote the broad dissemination of research, the current volume of the journal has transitioned from a gated subscription model to an open access format. This change has been made possible through the Annual Reviews' Subscribe to Open program, which allows all articles published in this volume to be freely accessible to readers. As part of this transition, all articles in the journal are published under a Creative Commons Attribution (CC BY) license, which encourages open sharing and use of the research.
期刊最新文献
Challenges and Opportunities in the Clinical Translation of High-Resolution Spatial Transcriptomics. RNA Damage Responses in Cellular Homeostasis, Genome Stability, and Disease. Choroid Plexus Pathophysiology. Contributions of Inflammation to Cardiometabolic Heart Failure with Preserved Ejection Fraction. Inherited Predispositions to Myeloid Neoplasms: Pathogenesis and Clinical Implications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1