在树状排序或伞状排序下,诊断检测准确度测量和最佳截断点选择程序的不同视角。

IF 1.2 4区 医学 Q4 PHARMACOLOGY & PHARMACY Journal of Biopharmaceutical Statistics Pub Date : 2024-10-30 DOI:10.1080/10543406.2024.2420659
Jing Kersey, Hani Samawi, Marwan Alsharman, Mario Keko, Haresh Rochani, Lili Yu, Jingjing Yin, Kelly Sullivan, Salaheddin Mustafa
{"title":"在树状排序或伞状排序下,诊断检测准确度测量和最佳截断点选择程序的不同视角。","authors":"Jing Kersey, Hani Samawi, Marwan Alsharman, Mario Keko, Haresh Rochani, Lili Yu, Jingjing Yin, Kelly Sullivan, Salaheddin Mustafa","doi":"10.1080/10543406.2024.2420659","DOIUrl":null,"url":null,"abstract":"<p><p>In the realm of medical diagnostic testing, diagnostic tests can assume either binary forms, distinguishing between diseased and non-diseased states, or ordinal forms, categorizing states from non-diseased to various stages (1 to K). Another significant classification scheme for multi-class scenarios is tree or umbrella ordering, which entails several unordered sub-classes (subtypes) within a biomarker. Within tree or umbrella ordering, the classifier assesses whether the marker measurement for one class surpasses or falls below those for the other classes. Although Receiver Operating Characteristic (ROC) curves and summary measures have been adapted to accommodate tree and umbrella ordering, these approaches often yield cut-off points that generate highly sensitive tests for certain disease subtypes while compromising specificity for others. This may not be ideal for all diseases. Hence, in this investigation, we explore diverse measures of diagnostic test accuracy and optimal cut-off point selection procedures under tree or umbrella ordering to foster more specific tests. We present numerical examples and simulation studies and demonstrate the approach using real data on lung cancer.</p>","PeriodicalId":54870,"journal":{"name":"Journal of Biopharmaceutical Statistics","volume":" ","pages":"1-31"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different view of the diagnostics test accuracy measures and optimal cut-off point selection procedure under tree or umbrella ordering.\",\"authors\":\"Jing Kersey, Hani Samawi, Marwan Alsharman, Mario Keko, Haresh Rochani, Lili Yu, Jingjing Yin, Kelly Sullivan, Salaheddin Mustafa\",\"doi\":\"10.1080/10543406.2024.2420659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the realm of medical diagnostic testing, diagnostic tests can assume either binary forms, distinguishing between diseased and non-diseased states, or ordinal forms, categorizing states from non-diseased to various stages (1 to K). Another significant classification scheme for multi-class scenarios is tree or umbrella ordering, which entails several unordered sub-classes (subtypes) within a biomarker. Within tree or umbrella ordering, the classifier assesses whether the marker measurement for one class surpasses or falls below those for the other classes. Although Receiver Operating Characteristic (ROC) curves and summary measures have been adapted to accommodate tree and umbrella ordering, these approaches often yield cut-off points that generate highly sensitive tests for certain disease subtypes while compromising specificity for others. This may not be ideal for all diseases. Hence, in this investigation, we explore diverse measures of diagnostic test accuracy and optimal cut-off point selection procedures under tree or umbrella ordering to foster more specific tests. We present numerical examples and simulation studies and demonstrate the approach using real data on lung cancer.</p>\",\"PeriodicalId\":54870,\"journal\":{\"name\":\"Journal of Biopharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"1-31\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biopharmaceutical Statistics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/10543406.2024.2420659\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biopharmaceutical Statistics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10543406.2024.2420659","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

在医学诊断检测领域,诊断检测既可以采用二元形式,区分患病和未患病状态,也可以采用序数形式,将未患病状态分为不同阶段(1 到 K)。多类情况下的另一种重要分类方法是树状排序或伞状排序,即在一个生物标记中包含多个无序的子类(亚型)。在树状排序或伞状排序中,分类器会评估一个类别的标记物测量值是否超过或低于其他类别的标记物测量值。虽然受体工作特征曲线(ROC)和摘要测量已被调整以适应树状排序和伞状排序,但这些方法产生的临界点往往会对某些疾病亚型产生高灵敏度的检测,而对其他疾病亚型的特异性则大打折扣。这可能不是所有疾病的理想选择。因此,在这项研究中,我们探讨了诊断测试准确性的各种测量方法,以及树状排序或伞状排序下的最佳截断点选择程序,以促进更有针对性的测试。我们介绍了数值示例和模拟研究,并使用肺癌的真实数据演示了这一方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Different view of the diagnostics test accuracy measures and optimal cut-off point selection procedure under tree or umbrella ordering.

In the realm of medical diagnostic testing, diagnostic tests can assume either binary forms, distinguishing between diseased and non-diseased states, or ordinal forms, categorizing states from non-diseased to various stages (1 to K). Another significant classification scheme for multi-class scenarios is tree or umbrella ordering, which entails several unordered sub-classes (subtypes) within a biomarker. Within tree or umbrella ordering, the classifier assesses whether the marker measurement for one class surpasses or falls below those for the other classes. Although Receiver Operating Characteristic (ROC) curves and summary measures have been adapted to accommodate tree and umbrella ordering, these approaches often yield cut-off points that generate highly sensitive tests for certain disease subtypes while compromising specificity for others. This may not be ideal for all diseases. Hence, in this investigation, we explore diverse measures of diagnostic test accuracy and optimal cut-off point selection procedures under tree or umbrella ordering to foster more specific tests. We present numerical examples and simulation studies and demonstrate the approach using real data on lung cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biopharmaceutical Statistics
Journal of Biopharmaceutical Statistics 医学-统计学与概率论
CiteScore
2.50
自引率
18.20%
发文量
71
审稿时长
6-12 weeks
期刊介绍: The Journal of Biopharmaceutical Statistics, a rapid publication journal, discusses quality applications of statistics in biopharmaceutical research and development. Now publishing six times per year, it includes expositions of statistical methodology with immediate applicability to biopharmaceutical research in the form of full-length and short manuscripts, review articles, selected/invited conference papers, short articles, and letters to the editor. Addressing timely and provocative topics important to the biostatistical profession, the journal covers: Drug, device, and biological research and development; Drug screening and drug design; Assessment of pharmacological activity; Pharmaceutical formulation and scale-up; Preclinical safety assessment; Bioavailability, bioequivalence, and pharmacokinetics; Phase, I, II, and III clinical development including complex innovative designs; Premarket approval assessment of clinical safety; Postmarketing surveillance; Big data and artificial intelligence and applications.
期刊最新文献
Revolutionizing cardiovascular disease classification through machine learning and statistical methods. The 2009 FDA PRO guidance, Potential Type I error, Descriptive Statistics and Pragmatic estimation of the number of interviews for item elicitation. BOP2-TE: Bayesian optimal phase 2 design for jointly monitoring efficacy and toxicity with application to dose optimization. Latent class analysis of post-acute sequelae of SARS-CoV-2 infection. Machine learning approach for detection of MACE events within clinical trial data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1