{"title":"氟喹诺酮类抗生素环丙沙星在水溶液中的紫外线光降解机理。","authors":"","doi":"10.1016/j.chemosphere.2024.143643","DOIUrl":null,"url":null,"abstract":"<div><div>Mechanism of direct UV photolysis of the zwitterionic and anionic forms of the quinolone antibiotic ciprofloxacin (CIP) was revealed by combination of nanosecond laser flash photolysis, steady-state photolysis coupled with high resolution LC-MS and DFT quantum-chemical calculations. For both forms, the main intermediate is a dissociative triplet state, which loses a fluorine ion to form a triplet carbocation; subsequent solvent attack of the latter leads to the formation of products of hydroxylation both the aromatic ring and the piperazyl substituent. Correspondingly, the quantum yield of photolysis of both CIP forms does not depend on the excitation wavelength, but depends on the concentration of dissolved oxygen. Secondary photolysis leads to a number of products of oxidation of the aromatic system, as well as oxidation, opening and full destruction of the piperazinyl substituent. The results obtained may be important for understanding the fate of quinolone antibiotics in UVC disinfection processes and in natural waters under the action of sunlight.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanism of UV photodegradation of fluoroquinolone antibiotic ciprofloxacin in aqueous solutions\",\"authors\":\"\",\"doi\":\"10.1016/j.chemosphere.2024.143643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mechanism of direct UV photolysis of the zwitterionic and anionic forms of the quinolone antibiotic ciprofloxacin (CIP) was revealed by combination of nanosecond laser flash photolysis, steady-state photolysis coupled with high resolution LC-MS and DFT quantum-chemical calculations. For both forms, the main intermediate is a dissociative triplet state, which loses a fluorine ion to form a triplet carbocation; subsequent solvent attack of the latter leads to the formation of products of hydroxylation both the aromatic ring and the piperazyl substituent. Correspondingly, the quantum yield of photolysis of both CIP forms does not depend on the excitation wavelength, but depends on the concentration of dissolved oxygen. Secondary photolysis leads to a number of products of oxidation of the aromatic system, as well as oxidation, opening and full destruction of the piperazinyl substituent. The results obtained may be important for understanding the fate of quinolone antibiotics in UVC disinfection processes and in natural waters under the action of sunlight.</div></div>\",\"PeriodicalId\":276,\"journal\":{\"name\":\"Chemosphere\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemosphere\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045653524025438\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524025438","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Mechanism of UV photodegradation of fluoroquinolone antibiotic ciprofloxacin in aqueous solutions
Mechanism of direct UV photolysis of the zwitterionic and anionic forms of the quinolone antibiotic ciprofloxacin (CIP) was revealed by combination of nanosecond laser flash photolysis, steady-state photolysis coupled with high resolution LC-MS and DFT quantum-chemical calculations. For both forms, the main intermediate is a dissociative triplet state, which loses a fluorine ion to form a triplet carbocation; subsequent solvent attack of the latter leads to the formation of products of hydroxylation both the aromatic ring and the piperazyl substituent. Correspondingly, the quantum yield of photolysis of both CIP forms does not depend on the excitation wavelength, but depends on the concentration of dissolved oxygen. Secondary photolysis leads to a number of products of oxidation of the aromatic system, as well as oxidation, opening and full destruction of the piperazinyl substituent. The results obtained may be important for understanding the fate of quinolone antibiotics in UVC disinfection processes and in natural waters under the action of sunlight.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.