Ting Wang, Gaoli Xu, Chuankai Zhang, Tymour Forouzanfar, Junwei Liang, Yulei Pan, Chenxi Shen, Gang Wu, Haiyan Lin
{"title":"用于比格犬垂直骨增量的骨诱导功能化三维打印支架","authors":"Ting Wang, Gaoli Xu, Chuankai Zhang, Tymour Forouzanfar, Junwei Liang, Yulei Pan, Chenxi Shen, Gang Wu, Haiyan Lin","doi":"10.1111/cid.13408","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Objective</h3>\n \n <p>To evaluate the efficacy of 3D-printed scaffolds that were osteoinductively functionalized with a bone morphogenetic protein 2 (BMP-2)-incorporated biomimetic calcium phosphate particles (BMP-2-inc. BpNcCaP)/hyaluronic acid (HA) composite gel in vertical bone augmentation in beagle dogs.</p>\n </section>\n \n <section>\n \n <h3> Materials and Methods</h3>\n \n <p>Four Beagle dogs were used in this study. Three months after the extraction of 1st, 2nd, 3rd, and 4th premolars at both sides of the lower jaws of Beagle dogs, one or two critical-size vertical bone defects (4 mm vertical bone defect without buccal and lingual bone) on each side were surgically created. The defects were randomly subjected to the following groups: (1) Control (without bone-defect-filling materials); (2) 3D scaffold; (3) BMP2-inc. BpNcCaP/HA-functionalized 3D scaffold. Six weeks post-surgery, samples were harvested and subjected to micro-CT and histomorphometric analyses.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The struts of the BMP2-inc. BpNcCaP/HA-func. 3D scaffold were covered by a thick layer of cemented irregular particles with an average pore size at 327 ± 27 μm. The BpNcCaP/HA-func. 3D scaffold group bore significantly higher bone volume, bone volume fraction, trabecular number, trabecular thickness, bone mineral density, connectivity density, and bone volumes in three directions (mesiodistal, buccolingual, and apicocoronal) when compared with the groups of Control and 3D scaffold. Moreover, the BMP2-inc. BpNcCaP/HA-func. 3D scaffold group bore significantly lower trabecular separation and exhibited significantly higher bone-to-scaffold contact percentage and newly formed bone area percentage within pores in comparison with 3D scaffold.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>BMP2-inc. BpNcCaP/HA-func. 3D scaffold dramatically enhanced vertical alveolar bone augmentation, which suggests a promising application potential of BMP2-inc. BpNcCaP/HA-func. 3D scaffold in dental clinic.</p>\n </section>\n </div>","PeriodicalId":50679,"journal":{"name":"Clinical Implant Dentistry and Related Research","volume":"27 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Osteoinductively Functionalized 3D-Printed Scaffold for Vertical Bone Augmentation in Beagle Dogs\",\"authors\":\"Ting Wang, Gaoli Xu, Chuankai Zhang, Tymour Forouzanfar, Junwei Liang, Yulei Pan, Chenxi Shen, Gang Wu, Haiyan Lin\",\"doi\":\"10.1111/cid.13408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Objective</h3>\\n \\n <p>To evaluate the efficacy of 3D-printed scaffolds that were osteoinductively functionalized with a bone morphogenetic protein 2 (BMP-2)-incorporated biomimetic calcium phosphate particles (BMP-2-inc. BpNcCaP)/hyaluronic acid (HA) composite gel in vertical bone augmentation in beagle dogs.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Materials and Methods</h3>\\n \\n <p>Four Beagle dogs were used in this study. Three months after the extraction of 1st, 2nd, 3rd, and 4th premolars at both sides of the lower jaws of Beagle dogs, one or two critical-size vertical bone defects (4 mm vertical bone defect without buccal and lingual bone) on each side were surgically created. The defects were randomly subjected to the following groups: (1) Control (without bone-defect-filling materials); (2) 3D scaffold; (3) BMP2-inc. BpNcCaP/HA-functionalized 3D scaffold. Six weeks post-surgery, samples were harvested and subjected to micro-CT and histomorphometric analyses.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The struts of the BMP2-inc. BpNcCaP/HA-func. 3D scaffold were covered by a thick layer of cemented irregular particles with an average pore size at 327 ± 27 μm. The BpNcCaP/HA-func. 3D scaffold group bore significantly higher bone volume, bone volume fraction, trabecular number, trabecular thickness, bone mineral density, connectivity density, and bone volumes in three directions (mesiodistal, buccolingual, and apicocoronal) when compared with the groups of Control and 3D scaffold. Moreover, the BMP2-inc. BpNcCaP/HA-func. 3D scaffold group bore significantly lower trabecular separation and exhibited significantly higher bone-to-scaffold contact percentage and newly formed bone area percentage within pores in comparison with 3D scaffold.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>BMP2-inc. BpNcCaP/HA-func. 3D scaffold dramatically enhanced vertical alveolar bone augmentation, which suggests a promising application potential of BMP2-inc. BpNcCaP/HA-func. 3D scaffold in dental clinic.</p>\\n </section>\\n </div>\",\"PeriodicalId\":50679,\"journal\":{\"name\":\"Clinical Implant Dentistry and Related Research\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinical Implant Dentistry and Related Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cid.13408\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"DENTISTRY, ORAL SURGERY & MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical Implant Dentistry and Related Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cid.13408","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
Osteoinductively Functionalized 3D-Printed Scaffold for Vertical Bone Augmentation in Beagle Dogs
Objective
To evaluate the efficacy of 3D-printed scaffolds that were osteoinductively functionalized with a bone morphogenetic protein 2 (BMP-2)-incorporated biomimetic calcium phosphate particles (BMP-2-inc. BpNcCaP)/hyaluronic acid (HA) composite gel in vertical bone augmentation in beagle dogs.
Materials and Methods
Four Beagle dogs were used in this study. Three months after the extraction of 1st, 2nd, 3rd, and 4th premolars at both sides of the lower jaws of Beagle dogs, one or two critical-size vertical bone defects (4 mm vertical bone defect without buccal and lingual bone) on each side were surgically created. The defects were randomly subjected to the following groups: (1) Control (without bone-defect-filling materials); (2) 3D scaffold; (3) BMP2-inc. BpNcCaP/HA-functionalized 3D scaffold. Six weeks post-surgery, samples were harvested and subjected to micro-CT and histomorphometric analyses.
Results
The struts of the BMP2-inc. BpNcCaP/HA-func. 3D scaffold were covered by a thick layer of cemented irregular particles with an average pore size at 327 ± 27 μm. The BpNcCaP/HA-func. 3D scaffold group bore significantly higher bone volume, bone volume fraction, trabecular number, trabecular thickness, bone mineral density, connectivity density, and bone volumes in three directions (mesiodistal, buccolingual, and apicocoronal) when compared with the groups of Control and 3D scaffold. Moreover, the BMP2-inc. BpNcCaP/HA-func. 3D scaffold group bore significantly lower trabecular separation and exhibited significantly higher bone-to-scaffold contact percentage and newly formed bone area percentage within pores in comparison with 3D scaffold.
Conclusions
BMP2-inc. BpNcCaP/HA-func. 3D scaffold dramatically enhanced vertical alveolar bone augmentation, which suggests a promising application potential of BMP2-inc. BpNcCaP/HA-func. 3D scaffold in dental clinic.
期刊介绍:
The goal of Clinical Implant Dentistry and Related Research is to advance the scientific and technical aspects relating to dental implants and related scientific subjects. Dissemination of new and evolving information related to dental implants and the related science is the primary goal of our journal.
The range of topics covered by the journals will include but be not limited to:
New scientific developments relating to bone
Implant surfaces and their relationship to the surrounding tissues
Computer aided implant designs
Computer aided prosthetic designs
Immediate implant loading
Immediate implant placement
Materials relating to bone induction and conduction
New surgical methods relating to implant placement
New materials and methods relating to implant restorations
Methods for determining implant stability
A primary focus of the journal is publication of evidenced based articles evaluating to new dental implants, techniques and multicenter studies evaluating these treatments. In addition basic science research relating to wound healing and osseointegration will be an important focus for the journal.