Qingchun Yang , Lei Zhao , Runjie Bao , Yingjie Fan , Jianlong Zhou , Dongwen Rong , Huairong Zhou , Dawei Zhang
{"title":"针对碳中和烯烃生产的可解释机器学习辅助高级放能优化技术","authors":"Qingchun Yang , Lei Zhao , Runjie Bao , Yingjie Fan , Jianlong Zhou , Dongwen Rong , Huairong Zhou , Dawei Zhang","doi":"10.1016/j.rser.2024.115027","DOIUrl":null,"url":null,"abstract":"<div><div>The CO<sub>2</sub>-to-light olefins technology represents a significant approach to mitigating the greenhouse effect and advancing green energy solutions. However, little literature comprehensively analyzes and optimizes its thermodynamic performance. This study proposes an interpretable machine learning-assisted advanced exergy analysis and optimization framework to ascertain the actual improvement potential and determine effective strategies for optimizing this system. The advanced exergy analysis method aims to identify the avoidable exergy destruction and interactions between components of the system, while integrating an interpretable machine learning model to provide the key parameters for enhancing the system's exergy efficiency through feature importance analysis. The findings indicate that the exergy destruction of the system amounts to 656.06 MW, with 96.81 % of this exergy destruction being attributed to endogenous factors and approximately 66.51 % of it being potentially avoidable. The random forest model, exhibiting superior predictive accuracy compared to other machine learning models, is coupled with the interpretable Shapley additive explanation approach to discern the most crucial parameters of the system. Results indicated catalyst properties have the greatest impact on the output performance of the system, contributing up to 66.1 % to the predicted results. The active component type, reaction temperature, and promoter content have the largest contribution to the prediction of CO<sub>2</sub> conversion ratio and light olefins selectivity. Furthermore, the key input features are optimized by screening for better catalysts and conducting sensitivity analysis. After optimization, the system's avoidable exergy destruction is significantly saved by 32.27 %, resulting in an enhancement in exergy efficiency by 8.12 %.</div></div>","PeriodicalId":418,"journal":{"name":"Renewable and Sustainable Energy Reviews","volume":null,"pages":null},"PeriodicalIF":16.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interpretable machine learning-assisted advanced exergy optimization for carbon-neutral olefins production\",\"authors\":\"Qingchun Yang , Lei Zhao , Runjie Bao , Yingjie Fan , Jianlong Zhou , Dongwen Rong , Huairong Zhou , Dawei Zhang\",\"doi\":\"10.1016/j.rser.2024.115027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The CO<sub>2</sub>-to-light olefins technology represents a significant approach to mitigating the greenhouse effect and advancing green energy solutions. However, little literature comprehensively analyzes and optimizes its thermodynamic performance. This study proposes an interpretable machine learning-assisted advanced exergy analysis and optimization framework to ascertain the actual improvement potential and determine effective strategies for optimizing this system. The advanced exergy analysis method aims to identify the avoidable exergy destruction and interactions between components of the system, while integrating an interpretable machine learning model to provide the key parameters for enhancing the system's exergy efficiency through feature importance analysis. The findings indicate that the exergy destruction of the system amounts to 656.06 MW, with 96.81 % of this exergy destruction being attributed to endogenous factors and approximately 66.51 % of it being potentially avoidable. The random forest model, exhibiting superior predictive accuracy compared to other machine learning models, is coupled with the interpretable Shapley additive explanation approach to discern the most crucial parameters of the system. Results indicated catalyst properties have the greatest impact on the output performance of the system, contributing up to 66.1 % to the predicted results. The active component type, reaction temperature, and promoter content have the largest contribution to the prediction of CO<sub>2</sub> conversion ratio and light olefins selectivity. Furthermore, the key input features are optimized by screening for better catalysts and conducting sensitivity analysis. After optimization, the system's avoidable exergy destruction is significantly saved by 32.27 %, resulting in an enhancement in exergy efficiency by 8.12 %.</div></div>\",\"PeriodicalId\":418,\"journal\":{\"name\":\"Renewable and Sustainable Energy Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Reviews\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364032124007536\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Reviews","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364032124007536","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Interpretable machine learning-assisted advanced exergy optimization for carbon-neutral olefins production
The CO2-to-light olefins technology represents a significant approach to mitigating the greenhouse effect and advancing green energy solutions. However, little literature comprehensively analyzes and optimizes its thermodynamic performance. This study proposes an interpretable machine learning-assisted advanced exergy analysis and optimization framework to ascertain the actual improvement potential and determine effective strategies for optimizing this system. The advanced exergy analysis method aims to identify the avoidable exergy destruction and interactions between components of the system, while integrating an interpretable machine learning model to provide the key parameters for enhancing the system's exergy efficiency through feature importance analysis. The findings indicate that the exergy destruction of the system amounts to 656.06 MW, with 96.81 % of this exergy destruction being attributed to endogenous factors and approximately 66.51 % of it being potentially avoidable. The random forest model, exhibiting superior predictive accuracy compared to other machine learning models, is coupled with the interpretable Shapley additive explanation approach to discern the most crucial parameters of the system. Results indicated catalyst properties have the greatest impact on the output performance of the system, contributing up to 66.1 % to the predicted results. The active component type, reaction temperature, and promoter content have the largest contribution to the prediction of CO2 conversion ratio and light olefins selectivity. Furthermore, the key input features are optimized by screening for better catalysts and conducting sensitivity analysis. After optimization, the system's avoidable exergy destruction is significantly saved by 32.27 %, resulting in an enhancement in exergy efficiency by 8.12 %.
期刊介绍:
The mission of Renewable and Sustainable Energy Reviews is to disseminate the most compelling and pertinent critical insights in renewable and sustainable energy, fostering collaboration among the research community, private sector, and policy and decision makers. The journal aims to exchange challenges, solutions, innovative concepts, and technologies, contributing to sustainable development, the transition to a low-carbon future, and the attainment of emissions targets outlined by the United Nations Framework Convention on Climate Change.
Renewable and Sustainable Energy Reviews publishes a diverse range of content, including review papers, original research, case studies, and analyses of new technologies, all featuring a substantial review component such as critique, comparison, or analysis. Introducing a distinctive paper type, Expert Insights, the journal presents commissioned mini-reviews authored by field leaders, addressing topics of significant interest. Case studies undergo consideration only if they showcase the work's applicability to other regions or contribute valuable insights to the broader field of renewable and sustainable energy. Notably, a bibliographic or literature review lacking critical analysis is deemed unsuitable for publication.