Faiza Javed , Saima Tehseen , Faiza Ashfaq , Aysha Sameen , Waseem Khalid , Rizwana Batool , Ahmed Bilal , Muhammad Zubair Khalid , Tawfiq Alsulami , Robert Mugabi , Gulzar Ahmad Nayik
{"title":"利用不同含量的超声波辅助辣木提取物作为天然防腐剂,稳定榕树饮料的品质","authors":"Faiza Javed , Saima Tehseen , Faiza Ashfaq , Aysha Sameen , Waseem Khalid , Rizwana Batool , Ahmed Bilal , Muhammad Zubair Khalid , Tawfiq Alsulami , Robert Mugabi , Gulzar Ahmad Nayik","doi":"10.1016/j.ultsonch.2024.107133","DOIUrl":null,"url":null,"abstract":"<div><div>Fig fruit (<em>Ficus carica</em> L.) drink is a source of healthy minerals, vitamins, and bioactive ingredients however to improve the shelf-life of functional drink naturally, moringa leaf extract was compared with optimized concentration of potassium metabisulphite (synthetic preservative). Purposely, fig fruit drink, without preservatives was considered as negative control whereas, 0.2 % potassium metabisulphite-based fig fruit drink was taken as positive control. Further, ultrasound assisted extracts of moringa at varied levels; 5, 10, 15, and 20 % were incorporated in the fig fruit drink as natural preservative to test antioxidant, storage, and sensory quality against control samples. Resultantly, the maximum loss in antioxidant activity (18–38 %) and functional ingredients (24–56 %) was observed in negative control sample, in response to high microbial expansion till the termination of the study. Additionally, acceptability score for negative control sample was maximum at Day 1, that afterwards faced significant decline at 30th Day (6.6 ± 0.3). In contrast, positive control sample demonstrated minimum loss of free radical scavenging ability (7–22 %), polyphenols (11 %) and flavonoids (7 %) thus indicated maximum control on microbes i.e. 61–63 % as compared to negative control. Further, positive control sample indicated optimum consumer preference (7.0 ± 0.3) that remained stable throughout storage. Further, as the concentration of moringa exceeded from 5 to 20 %, the loss of functional ingredients reduced from 13 to 24 to 6–11 % and deterioration in antioxidant capacity suppressed from 14 to 26 to 8–20 %, correspondingly however, the sensory acceptability showed a declining trend, and 20 % moringa based sample portrayed poor consumer response (5.0 ± 0.2). Lastly, it was deduced that control on microbes was directly proportional to the concentration of moringa extract in fig fruit drink, that was poor in 5 % moringa extract concentration; 32–54 %. Conclusively, customer preference was reasonable (6 ± 0) at 15 % moringa extract concentration so this level should be employed in fig fruit drink for realistic control on bacterial (57 %) and fungal (47 %) activities.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"111 ","pages":"Article 107133"},"PeriodicalIF":8.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stabilization of Ficus carica L. Drink by utilizing varying levels of ultrasound-assisted moringa extract as a natural preservative\",\"authors\":\"Faiza Javed , Saima Tehseen , Faiza Ashfaq , Aysha Sameen , Waseem Khalid , Rizwana Batool , Ahmed Bilal , Muhammad Zubair Khalid , Tawfiq Alsulami , Robert Mugabi , Gulzar Ahmad Nayik\",\"doi\":\"10.1016/j.ultsonch.2024.107133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Fig fruit (<em>Ficus carica</em> L.) drink is a source of healthy minerals, vitamins, and bioactive ingredients however to improve the shelf-life of functional drink naturally, moringa leaf extract was compared with optimized concentration of potassium metabisulphite (synthetic preservative). Purposely, fig fruit drink, without preservatives was considered as negative control whereas, 0.2 % potassium metabisulphite-based fig fruit drink was taken as positive control. Further, ultrasound assisted extracts of moringa at varied levels; 5, 10, 15, and 20 % were incorporated in the fig fruit drink as natural preservative to test antioxidant, storage, and sensory quality against control samples. Resultantly, the maximum loss in antioxidant activity (18–38 %) and functional ingredients (24–56 %) was observed in negative control sample, in response to high microbial expansion till the termination of the study. Additionally, acceptability score for negative control sample was maximum at Day 1, that afterwards faced significant decline at 30th Day (6.6 ± 0.3). In contrast, positive control sample demonstrated minimum loss of free radical scavenging ability (7–22 %), polyphenols (11 %) and flavonoids (7 %) thus indicated maximum control on microbes i.e. 61–63 % as compared to negative control. Further, positive control sample indicated optimum consumer preference (7.0 ± 0.3) that remained stable throughout storage. Further, as the concentration of moringa exceeded from 5 to 20 %, the loss of functional ingredients reduced from 13 to 24 to 6–11 % and deterioration in antioxidant capacity suppressed from 14 to 26 to 8–20 %, correspondingly however, the sensory acceptability showed a declining trend, and 20 % moringa based sample portrayed poor consumer response (5.0 ± 0.2). Lastly, it was deduced that control on microbes was directly proportional to the concentration of moringa extract in fig fruit drink, that was poor in 5 % moringa extract concentration; 32–54 %. Conclusively, customer preference was reasonable (6 ± 0) at 15 % moringa extract concentration so this level should be employed in fig fruit drink for realistic control on bacterial (57 %) and fungal (47 %) activities.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"111 \",\"pages\":\"Article 107133\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1350417724003821\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1350417724003821","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Stabilization of Ficus carica L. Drink by utilizing varying levels of ultrasound-assisted moringa extract as a natural preservative
Fig fruit (Ficus carica L.) drink is a source of healthy minerals, vitamins, and bioactive ingredients however to improve the shelf-life of functional drink naturally, moringa leaf extract was compared with optimized concentration of potassium metabisulphite (synthetic preservative). Purposely, fig fruit drink, without preservatives was considered as negative control whereas, 0.2 % potassium metabisulphite-based fig fruit drink was taken as positive control. Further, ultrasound assisted extracts of moringa at varied levels; 5, 10, 15, and 20 % were incorporated in the fig fruit drink as natural preservative to test antioxidant, storage, and sensory quality against control samples. Resultantly, the maximum loss in antioxidant activity (18–38 %) and functional ingredients (24–56 %) was observed in negative control sample, in response to high microbial expansion till the termination of the study. Additionally, acceptability score for negative control sample was maximum at Day 1, that afterwards faced significant decline at 30th Day (6.6 ± 0.3). In contrast, positive control sample demonstrated minimum loss of free radical scavenging ability (7–22 %), polyphenols (11 %) and flavonoids (7 %) thus indicated maximum control on microbes i.e. 61–63 % as compared to negative control. Further, positive control sample indicated optimum consumer preference (7.0 ± 0.3) that remained stable throughout storage. Further, as the concentration of moringa exceeded from 5 to 20 %, the loss of functional ingredients reduced from 13 to 24 to 6–11 % and deterioration in antioxidant capacity suppressed from 14 to 26 to 8–20 %, correspondingly however, the sensory acceptability showed a declining trend, and 20 % moringa based sample portrayed poor consumer response (5.0 ± 0.2). Lastly, it was deduced that control on microbes was directly proportional to the concentration of moringa extract in fig fruit drink, that was poor in 5 % moringa extract concentration; 32–54 %. Conclusively, customer preference was reasonable (6 ± 0) at 15 % moringa extract concentration so this level should be employed in fig fruit drink for realistic control on bacterial (57 %) and fungal (47 %) activities.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.