Feifan Leng , Yubo Wang , Ning Zhu , Xiaopeng Guo , Wen Luo , Yonggang Wang
{"title":"基于超声波功率的大肠杆菌转化效率定量模型的开发与机理探索","authors":"Feifan Leng , Yubo Wang , Ning Zhu , Xiaopeng Guo , Wen Luo , Yonggang Wang","doi":"10.1016/j.ultsonch.2024.107132","DOIUrl":null,"url":null,"abstract":"<div><div>Ultrasonic-mediated plasmid transformation is a promising microbial transformation strategy with broad application prospects that has attracted interest across various fields. Limited research exists on developing a quantitative model to understand the relationship between transformation efficiency and ultrasonic power. Within the ultrasonic range that did not damage plasmids, the maximum transformation efficiency reached at 4.84 × 10<sup>5</sup> CFU/μg DNA. A kinetic model based on changes in membrane permeability was utilized to determine the membrane permeability at different power levels. The results indicated a linear correlation between ultrasonic power, transformation efficiency, and membrane permeability within a specific range. A quantitative relationship model was established based on ultrasonic power and transformation efficiency in <em>E. coli</em>. Electron microscopy revealed that <em>E. coli</em> cells subjected to ultrasonic treatment exhibited pore formation and cellular expansion. Furthermore, the integrity of the bacterial membrane was compromised as ultrasonic power increased. Nine genes associated with the functional terms of cell membrane components and transmembrane transport were identified in <em>E. coli</em> DH5α. According to qRT-PCR results, genes with these functions (including <em>cusC, uidC, tolQ, tolA, ompC, yaiY)</em> play crucial roles in ultrasound-mediated transformation of <em>E. coli</em> DH5α<em>.</em> This study suggested that ultrasound-mediated transformation in <em>E. coli</em> DH5α is not a simple physical–chemical process but rather involves the regulation of responsive membrane-related genes. This research establishes the groundwork for future comprehensive investigations into the molecular mechanism of ultrasound-mediated transformation and provides insights for the application of ultrasound technology in genetic engineering and related fields.</div></div>","PeriodicalId":442,"journal":{"name":"Ultrasonics Sonochemistry","volume":"111 ","pages":"Article 107132"},"PeriodicalIF":8.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and mechanism exploration of a quantitative model for Escherichia coli transformation efficiency based on ultrasonic power\",\"authors\":\"Feifan Leng , Yubo Wang , Ning Zhu , Xiaopeng Guo , Wen Luo , Yonggang Wang\",\"doi\":\"10.1016/j.ultsonch.2024.107132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ultrasonic-mediated plasmid transformation is a promising microbial transformation strategy with broad application prospects that has attracted interest across various fields. Limited research exists on developing a quantitative model to understand the relationship between transformation efficiency and ultrasonic power. Within the ultrasonic range that did not damage plasmids, the maximum transformation efficiency reached at 4.84 × 10<sup>5</sup> CFU/μg DNA. A kinetic model based on changes in membrane permeability was utilized to determine the membrane permeability at different power levels. The results indicated a linear correlation between ultrasonic power, transformation efficiency, and membrane permeability within a specific range. A quantitative relationship model was established based on ultrasonic power and transformation efficiency in <em>E. coli</em>. Electron microscopy revealed that <em>E. coli</em> cells subjected to ultrasonic treatment exhibited pore formation and cellular expansion. Furthermore, the integrity of the bacterial membrane was compromised as ultrasonic power increased. Nine genes associated with the functional terms of cell membrane components and transmembrane transport were identified in <em>E. coli</em> DH5α. According to qRT-PCR results, genes with these functions (including <em>cusC, uidC, tolQ, tolA, ompC, yaiY)</em> play crucial roles in ultrasound-mediated transformation of <em>E. coli</em> DH5α<em>.</em> This study suggested that ultrasound-mediated transformation in <em>E. coli</em> DH5α is not a simple physical–chemical process but rather involves the regulation of responsive membrane-related genes. This research establishes the groundwork for future comprehensive investigations into the molecular mechanism of ultrasound-mediated transformation and provides insights for the application of ultrasound technology in genetic engineering and related fields.</div></div>\",\"PeriodicalId\":442,\"journal\":{\"name\":\"Ultrasonics Sonochemistry\",\"volume\":\"111 \",\"pages\":\"Article 107132\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ultrasonics Sonochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135041772400381X\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics Sonochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135041772400381X","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
Development and mechanism exploration of a quantitative model for Escherichia coli transformation efficiency based on ultrasonic power
Ultrasonic-mediated plasmid transformation is a promising microbial transformation strategy with broad application prospects that has attracted interest across various fields. Limited research exists on developing a quantitative model to understand the relationship between transformation efficiency and ultrasonic power. Within the ultrasonic range that did not damage plasmids, the maximum transformation efficiency reached at 4.84 × 105 CFU/μg DNA. A kinetic model based on changes in membrane permeability was utilized to determine the membrane permeability at different power levels. The results indicated a linear correlation between ultrasonic power, transformation efficiency, and membrane permeability within a specific range. A quantitative relationship model was established based on ultrasonic power and transformation efficiency in E. coli. Electron microscopy revealed that E. coli cells subjected to ultrasonic treatment exhibited pore formation and cellular expansion. Furthermore, the integrity of the bacterial membrane was compromised as ultrasonic power increased. Nine genes associated with the functional terms of cell membrane components and transmembrane transport were identified in E. coli DH5α. According to qRT-PCR results, genes with these functions (including cusC, uidC, tolQ, tolA, ompC, yaiY) play crucial roles in ultrasound-mediated transformation of E. coli DH5α. This study suggested that ultrasound-mediated transformation in E. coli DH5α is not a simple physical–chemical process but rather involves the regulation of responsive membrane-related genes. This research establishes the groundwork for future comprehensive investigations into the molecular mechanism of ultrasound-mediated transformation and provides insights for the application of ultrasound technology in genetic engineering and related fields.
期刊介绍:
Ultrasonics Sonochemistry stands as a premier international journal dedicated to the publication of high-quality research articles primarily focusing on chemical reactions and reactors induced by ultrasonic waves, known as sonochemistry. Beyond chemical reactions, the journal also welcomes contributions related to cavitation-induced events and processing, including sonoluminescence, and the transformation of materials on chemical, physical, and biological levels.
Since its inception in 1994, Ultrasonics Sonochemistry has consistently maintained a top ranking in the "Acoustics" category, reflecting its esteemed reputation in the field. The journal publishes exceptional papers covering various areas of ultrasonics and sonochemistry. Its contributions are highly regarded by both academia and industry stakeholders, demonstrating its relevance and impact in advancing research and innovation.