利用机器学习模拟全球中层浮游生物生物量

IF 3.8 3区 地球科学 Q1 OCEANOGRAPHY Progress in Oceanography Pub Date : 2024-10-28 DOI:10.1016/j.pocean.2024.103371
{"title":"利用机器学习模拟全球中层浮游生物生物量","authors":"","doi":"10.1016/j.pocean.2024.103371","DOIUrl":null,"url":null,"abstract":"<div><div>Mesozooplankton are a crucial link between primary producers and higher trophic levels and play a vital role in marine food webs, biological carbon pumps, and sustaining fishery resources. However, the global distribution of mesozooplankton biomass and the relevant controlling mechanisms remain elusive. We compared four machine learning algorithms (Boosted Regression Trees, Random Forest, Artificial Neural Network, and Support Vector Machine) to model the spatiotemporal distributions of global mesozooplankton biomass. These algorithms were trained on a compiled dataset of published mesozooplankton biomass observations with corresponding environmental predictors from contemporaneous satellite observations (temperature, chlorophyll, salinity, and mixed layer depth). We found that Random Forest achieved the best predictive accuracy with <em>R<sup>2</sup></em> and <em>RMSE</em> (Root Mean Standard Error) of 0.57 and 0.39, respectively. Also, the global distribution of mesozooplankton biomass predicted by the Random Forest model was more consistent with the observational data than other models. We used the Random Forest model to create a global map of mesozooplankton biomass which serves as a reference for validating process-based ecosystem models. The model outputs confirm that environmental factors, especially surface Chl <em>a</em>, a proxy for prey availability, significantly correlate with the spatiotemporal distribution of mesozooplankton biomass. The scaling relationship between the mesozooplankton biomass and Chl <em>a</em> can be used as an emergent constraint for model validation and development. Moreover, our model predicts that the global total mesozooplankton biomass will decrease by 3% by the end of this century under the “business-as-usual” scenarios, potentially reducing fishery production and carbon sequestration. Our study contributes to predicting global mesozooplankton biomass and provides deep insights into the underlying environmental impacts on the distribution of mesozooplankton biomass.</div></div>","PeriodicalId":20620,"journal":{"name":"Progress in Oceanography","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling global mesozooplankton biomass using machine learning\",\"authors\":\"\",\"doi\":\"10.1016/j.pocean.2024.103371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mesozooplankton are a crucial link between primary producers and higher trophic levels and play a vital role in marine food webs, biological carbon pumps, and sustaining fishery resources. However, the global distribution of mesozooplankton biomass and the relevant controlling mechanisms remain elusive. We compared four machine learning algorithms (Boosted Regression Trees, Random Forest, Artificial Neural Network, and Support Vector Machine) to model the spatiotemporal distributions of global mesozooplankton biomass. These algorithms were trained on a compiled dataset of published mesozooplankton biomass observations with corresponding environmental predictors from contemporaneous satellite observations (temperature, chlorophyll, salinity, and mixed layer depth). We found that Random Forest achieved the best predictive accuracy with <em>R<sup>2</sup></em> and <em>RMSE</em> (Root Mean Standard Error) of 0.57 and 0.39, respectively. Also, the global distribution of mesozooplankton biomass predicted by the Random Forest model was more consistent with the observational data than other models. We used the Random Forest model to create a global map of mesozooplankton biomass which serves as a reference for validating process-based ecosystem models. The model outputs confirm that environmental factors, especially surface Chl <em>a</em>, a proxy for prey availability, significantly correlate with the spatiotemporal distribution of mesozooplankton biomass. The scaling relationship between the mesozooplankton biomass and Chl <em>a</em> can be used as an emergent constraint for model validation and development. Moreover, our model predicts that the global total mesozooplankton biomass will decrease by 3% by the end of this century under the “business-as-usual” scenarios, potentially reducing fishery production and carbon sequestration. Our study contributes to predicting global mesozooplankton biomass and provides deep insights into the underlying environmental impacts on the distribution of mesozooplankton biomass.</div></div>\",\"PeriodicalId\":20620,\"journal\":{\"name\":\"Progress in Oceanography\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Oceanography\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079661124001770\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Oceanography","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079661124001770","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

摘要

中生浮游生物是初级生产者和较高营养级之间的重要环节,在海洋食物网、生物碳泵和维持渔业资源方面发挥着至关重要的作用。然而,中生浮游生物生物量的全球分布和相关控制机制仍然难以捉摸。我们比较了四种机器学习算法(提升回归树、随机森林、人工神经网络和支持向量机)来模拟全球中浮游生物生物量的时空分布。这些算法是在已发表的中生浮游生物生物量观测数据集上进行训练的,这些观测数据集与来自同期卫星观测的相应环境预测因子(温度、叶绿素、盐度和混合层深度)相匹配。我们发现,随机森林的预测精度最高,R2 和 RMSE(均方根标准误差)分别为 0.57 和 0.39。此外,与其他模型相比,随机森林模型预测的全球中生浮游生物生物量分布与观测数据更加一致。我们利用随机森林模型绘制了全球中浮游生物生物量分布图,为验证基于过程的生态系统模型提供了参考。模型输出结果证实,环境因素,尤其是代表猎物可获得性的地表 Chl a,与介类浮游生物生物量的时空分布有显著相关性。中生浮游生物生物量与 Chl a 之间的比例关系可作为模型验证和开发的一个新兴约束条件。此外,根据我们的模型预测,在 "一切照旧 "的情况下,到本世纪末全球中生浮游生物总生物量将减少 3%,这可能会降低渔业产量和碳固存量。我们的研究有助于预测全球中生浮游生物的生物量,并深入揭示了环境对中生浮游生物生物量分布的潜在影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling global mesozooplankton biomass using machine learning
Mesozooplankton are a crucial link between primary producers and higher trophic levels and play a vital role in marine food webs, biological carbon pumps, and sustaining fishery resources. However, the global distribution of mesozooplankton biomass and the relevant controlling mechanisms remain elusive. We compared four machine learning algorithms (Boosted Regression Trees, Random Forest, Artificial Neural Network, and Support Vector Machine) to model the spatiotemporal distributions of global mesozooplankton biomass. These algorithms were trained on a compiled dataset of published mesozooplankton biomass observations with corresponding environmental predictors from contemporaneous satellite observations (temperature, chlorophyll, salinity, and mixed layer depth). We found that Random Forest achieved the best predictive accuracy with R2 and RMSE (Root Mean Standard Error) of 0.57 and 0.39, respectively. Also, the global distribution of mesozooplankton biomass predicted by the Random Forest model was more consistent with the observational data than other models. We used the Random Forest model to create a global map of mesozooplankton biomass which serves as a reference for validating process-based ecosystem models. The model outputs confirm that environmental factors, especially surface Chl a, a proxy for prey availability, significantly correlate with the spatiotemporal distribution of mesozooplankton biomass. The scaling relationship between the mesozooplankton biomass and Chl a can be used as an emergent constraint for model validation and development. Moreover, our model predicts that the global total mesozooplankton biomass will decrease by 3% by the end of this century under the “business-as-usual” scenarios, potentially reducing fishery production and carbon sequestration. Our study contributes to predicting global mesozooplankton biomass and provides deep insights into the underlying environmental impacts on the distribution of mesozooplankton biomass.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Progress in Oceanography
Progress in Oceanography 地学-海洋学
CiteScore
7.20
自引率
4.90%
发文量
138
审稿时长
3 months
期刊介绍: Progress in Oceanography publishes the longer, more comprehensive papers that most oceanographers feel are necessary, on occasion, to do justice to their work. Contributions are generally either a review of an aspect of oceanography or a treatise on an expanding oceanographic subject. The articles cover the entire spectrum of disciplines within the science of oceanography. Occasionally volumes are devoted to collections of papers and conference proceedings of exceptional interest. Essential reading for all oceanographers.
期刊最新文献
Modelling global mesozooplankton biomass using machine learning Changes in glacial meltwater system around Amundsen sea Polynya illustrated by radium and oxygen isotopes Drivers of growth and decay of Sargassum in the Tropical Atlantic: A Lagrangian approach Long-term variation of the eddy kinetic energy in the Northeastern South China sea Stable carbon isotopic composition of particulate organic matter in the Cosmonaut and Cooperation Seas in summer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1