Huining Zhang , Lihong Tian , Zongqian Zhang , Jianping Han , Zhiguo Wu , Zhiqiang Wei , Shaofeng Wang , Yang Cao , Seng Zhang , Yue Zhang
{"title":"利用 BiVO4/Bi2WO6/Ti3C2 QDs 原位光催化-类芬顿技术有效降解苯酚","authors":"Huining Zhang , Lihong Tian , Zongqian Zhang , Jianping Han , Zhiguo Wu , Zhiqiang Wei , Shaofeng Wang , Yang Cao , Seng Zhang , Yue Zhang","doi":"10.1016/j.surfin.2024.105315","DOIUrl":null,"url":null,"abstract":"<div><div>Photocatalytically coupled Fenton-like is an environmentally promising technology for water treatment. In this work, BiVO<sub>4</sub>/Bi<sub>2</sub>WO<sub>6</sub>/Ti<sub>3</sub>C<sub>2</sub> QDs composite photocatalysts (BBT) were prepared by hydrothermal and calcination methods to construct an in situ photocatalytic Fenton-like system. The photocatalytic degradation experiments were carried out under xenon lamp irradiation with phenol as the target pollutant. The BBT-2 photocatalyst could degrade 78.0% of phenol in 180 min. Compared with the catalyst without Ti<sub>3</sub>C<sub>2</sub> QDs doping, the degradation efficiency was improved by 14%. The H<sub>2</sub>O<sub>2</sub> yield of the BBT-2 catalyst reached 48.7 μM in the same time. Free radical trapping experiments showed that the BBT photocatalysts generated H<sub>2</sub>O<sub>2</sub> by two-electron reduction of oxygen and hole oxidation of water. In addition, h<sup>+</sup> and H<sub>2</sub>O<sub>2</sub> play important roles in the phenol photocatalytic process during the degradation of phenol, and a possible reaction mechanism has been proposed. In this work, the combination of photocatalysis and Fenton-like reaction provides a solution for the green and sustainable degradation of highly toxic, difficult-to-degrade organic pollutants.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective degradation of phenol by in-situ photocatalytic-Fenton-like technology with BiVO4/Bi2WO6/Ti3C2 QDs\",\"authors\":\"Huining Zhang , Lihong Tian , Zongqian Zhang , Jianping Han , Zhiguo Wu , Zhiqiang Wei , Shaofeng Wang , Yang Cao , Seng Zhang , Yue Zhang\",\"doi\":\"10.1016/j.surfin.2024.105315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Photocatalytically coupled Fenton-like is an environmentally promising technology for water treatment. In this work, BiVO<sub>4</sub>/Bi<sub>2</sub>WO<sub>6</sub>/Ti<sub>3</sub>C<sub>2</sub> QDs composite photocatalysts (BBT) were prepared by hydrothermal and calcination methods to construct an in situ photocatalytic Fenton-like system. The photocatalytic degradation experiments were carried out under xenon lamp irradiation with phenol as the target pollutant. The BBT-2 photocatalyst could degrade 78.0% of phenol in 180 min. Compared with the catalyst without Ti<sub>3</sub>C<sub>2</sub> QDs doping, the degradation efficiency was improved by 14%. The H<sub>2</sub>O<sub>2</sub> yield of the BBT-2 catalyst reached 48.7 μM in the same time. Free radical trapping experiments showed that the BBT photocatalysts generated H<sub>2</sub>O<sub>2</sub> by two-electron reduction of oxygen and hole oxidation of water. In addition, h<sup>+</sup> and H<sub>2</sub>O<sub>2</sub> play important roles in the phenol photocatalytic process during the degradation of phenol, and a possible reaction mechanism has been proposed. In this work, the combination of photocatalysis and Fenton-like reaction provides a solution for the green and sustainable degradation of highly toxic, difficult-to-degrade organic pollutants.</div></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024014718\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024014718","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Effective degradation of phenol by in-situ photocatalytic-Fenton-like technology with BiVO4/Bi2WO6/Ti3C2 QDs
Photocatalytically coupled Fenton-like is an environmentally promising technology for water treatment. In this work, BiVO4/Bi2WO6/Ti3C2 QDs composite photocatalysts (BBT) were prepared by hydrothermal and calcination methods to construct an in situ photocatalytic Fenton-like system. The photocatalytic degradation experiments were carried out under xenon lamp irradiation with phenol as the target pollutant. The BBT-2 photocatalyst could degrade 78.0% of phenol in 180 min. Compared with the catalyst without Ti3C2 QDs doping, the degradation efficiency was improved by 14%. The H2O2 yield of the BBT-2 catalyst reached 48.7 μM in the same time. Free radical trapping experiments showed that the BBT photocatalysts generated H2O2 by two-electron reduction of oxygen and hole oxidation of water. In addition, h+ and H2O2 play important roles in the phenol photocatalytic process during the degradation of phenol, and a possible reaction mechanism has been proposed. In this work, the combination of photocatalysis and Fenton-like reaction provides a solution for the green and sustainable degradation of highly toxic, difficult-to-degrade organic pollutants.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.