用于超快小分子有机物分离的软性高渗透 COFs 纳滤膜

IF 8.4 1区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Membrane Science Pub Date : 2024-10-28 DOI:10.1016/j.memsci.2024.123452
Dongru Chen , Yixuan Tang , Ning Cao , Qiuyu Miao , Yan Wang , Jinhui Pang
{"title":"用于超快小分子有机物分离的软性高渗透 COFs 纳滤膜","authors":"Dongru Chen ,&nbsp;Yixuan Tang ,&nbsp;Ning Cao ,&nbsp;Qiuyu Miao ,&nbsp;Yan Wang ,&nbsp;Jinhui Pang","doi":"10.1016/j.memsci.2024.123452","DOIUrl":null,"url":null,"abstract":"<div><div>Covalent organic frameworks (COFs) are a novel materials platform that combines covalent connectivity, structural regularity, and molecularly precise porosity. However, COFs usually form insoluble aggregates, which limits their wide application in separation membranes. Here, we adopted “reaction-separation-assembly” strategy to produce continuous and uniform COFs membranes with controllable thickness. Our experimental data showed that the strategy can manipulate colloidal COFs suspensions to create tailored selective layer. The obtained membranes exhibited high pure water flux of 150 L m <sup>-2</sup> h<sup>-1</sup> bar<sup>-1</sup>, good salt/dyes separation factor and superior molecular sieving ability (&gt; 90 % for active pharmaceutical ingredients, &gt;97 % for dyes molecules), which is substantially higher than that of commercial NF1. In addition, the prepared composite membranes showed superior stability, especially under harsh conditions such as strong acids (4 mol L<sup>-1</sup> HCl) and strong bases (2 mol L<sup>-1</sup> NaOH). Overall, this work provides a promising approach for highly permeable and stable COFs membranes, and facilitates rapid recycling of small organic molecules such as active pharmaceutical ingredients and dyes.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"715 ","pages":"Article 123452"},"PeriodicalIF":8.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soft and highly permeable COFs nanofiltration membranes for ultrafast small organic molecules separation\",\"authors\":\"Dongru Chen ,&nbsp;Yixuan Tang ,&nbsp;Ning Cao ,&nbsp;Qiuyu Miao ,&nbsp;Yan Wang ,&nbsp;Jinhui Pang\",\"doi\":\"10.1016/j.memsci.2024.123452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Covalent organic frameworks (COFs) are a novel materials platform that combines covalent connectivity, structural regularity, and molecularly precise porosity. However, COFs usually form insoluble aggregates, which limits their wide application in separation membranes. Here, we adopted “reaction-separation-assembly” strategy to produce continuous and uniform COFs membranes with controllable thickness. Our experimental data showed that the strategy can manipulate colloidal COFs suspensions to create tailored selective layer. The obtained membranes exhibited high pure water flux of 150 L m <sup>-2</sup> h<sup>-1</sup> bar<sup>-1</sup>, good salt/dyes separation factor and superior molecular sieving ability (&gt; 90 % for active pharmaceutical ingredients, &gt;97 % for dyes molecules), which is substantially higher than that of commercial NF1. In addition, the prepared composite membranes showed superior stability, especially under harsh conditions such as strong acids (4 mol L<sup>-1</sup> HCl) and strong bases (2 mol L<sup>-1</sup> NaOH). Overall, this work provides a promising approach for highly permeable and stable COFs membranes, and facilitates rapid recycling of small organic molecules such as active pharmaceutical ingredients and dyes.</div></div>\",\"PeriodicalId\":368,\"journal\":{\"name\":\"Journal of Membrane Science\",\"volume\":\"715 \",\"pages\":\"Article 123452\"},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Membrane Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0376738824010469\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738824010469","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

共价有机框架(COFs)是一种新型材料平台,集共价连接性、结构规则性和分子精确多孔性于一身。然而,COF 通常会形成不溶性的聚集体,这限制了其在分离膜中的广泛应用。在这里,我们采用 "反应-分离-组装 "策略制备出厚度可控的连续均匀的 COFs 膜。我们的实验数据表明,该策略可以操纵 COFs 胶体悬浮液生成定制的选择性层。所制备的膜具有 150 L m -2 h-1 bar-1 的高纯水通量、良好的盐/染料分离因子和优异的分子筛分能力(对活性药物成分的筛分率为 90%,对染料分子的筛分率为 97%),大大高于商用 NF1。此外,所制备的复合膜显示出卓越的稳定性,尤其是在强酸(4 mol L-1 HCl)和强碱(2 mol L-1 NaOH)等苛刻条件下。总之,这项工作为制备高渗透性和高稳定性的 COFs 膜提供了一种前景广阔的方法,并有助于活性药物成分和染料等小分子有机物的快速回收利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Soft and highly permeable COFs nanofiltration membranes for ultrafast small organic molecules separation
Covalent organic frameworks (COFs) are a novel materials platform that combines covalent connectivity, structural regularity, and molecularly precise porosity. However, COFs usually form insoluble aggregates, which limits their wide application in separation membranes. Here, we adopted “reaction-separation-assembly” strategy to produce continuous and uniform COFs membranes with controllable thickness. Our experimental data showed that the strategy can manipulate colloidal COFs suspensions to create tailored selective layer. The obtained membranes exhibited high pure water flux of 150 L m -2 h-1 bar-1, good salt/dyes separation factor and superior molecular sieving ability (> 90 % for active pharmaceutical ingredients, >97 % for dyes molecules), which is substantially higher than that of commercial NF1. In addition, the prepared composite membranes showed superior stability, especially under harsh conditions such as strong acids (4 mol L-1 HCl) and strong bases (2 mol L-1 NaOH). Overall, this work provides a promising approach for highly permeable and stable COFs membranes, and facilitates rapid recycling of small organic molecules such as active pharmaceutical ingredients and dyes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
期刊最新文献
Stringing covalent organic framework particles for preparing highly loaded mixed-matrix membranes for efficient and precise dye separation High rejection seawater reverse osmosis TFC membranes with a polyamide-polysulfonamide interpenetrated functional layer Lattice-defective metal-organic framework membranes from filling mesoporous colloidal networks for monovalent ion separation Methanol tolerable ultrathin proton exchange membrane fabricated via in-situ ionic self-crosslinking strategy for high-performance DMFCs Non-metallic cation and anion co-doped perovskite oxide ceramic membranes for high-efficiency oxygen permeation at low temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1