Chuangang Yao , Baixi Xia , Haixia Zhang , Haocong Wang , Wenwen Zhang , Xiaoshi Lang , Kedi Cai
{"title":"温控原位构建成分可调的纳米粒子装饰 SOFC 阴极,增强氧还原动力学和二氧化碳耐受性","authors":"Chuangang Yao , Baixi Xia , Haixia Zhang , Haocong Wang , Wenwen Zhang , Xiaoshi Lang , Kedi Cai","doi":"10.1016/j.compositesb.2024.111917","DOIUrl":null,"url":null,"abstract":"<div><div>High oxygen reduction reaction (ORR) catalytic activity and CO<sub>2</sub> resistance of the cathode are fundamental to the commercial application of solid oxide fuel cells (SOFCs). Therefore, we develop a temperature-driven reduction-reoxidation strategy to in-situ construct heterostructured perovskite cathodes decorated with different nanoparticles by controlling the reduction temperature. For (Pr<sub>0.4</sub>Sr<sub>0.6</sub>)<sub>0.95</sub>Co<sub>0.2</sub>Fe<sub>0.8-<em>x</em></sub>Ni<sub><em>x</em></sub>O<sub>3-<em>δ</em></sub> (PSCFN, <em>x</em> = 0.05, 0.1), reduction (@700 °C)-reoxidation results in the exsolution of a Co<sub><em>m</em></sub>Fe<sub><em>n</em></sub>Ni<sub>3-<em>m</em>-<em>n</em></sub>O<sub>4</sub> spinel phase on the perovskite scaffold surface, while reduction (@750 °C)-reoxidation leads to the formation of both Co<sub><em>m</em></sub>Fe<sub><em>n</em></sub>Ni<sub>3-<em>m</em>-<em>n</em></sub>O<sub>4</sub> spinel phase and NiO nanoparticles. The exsolution of these highly active species increases the quantity of oxygen reduction active sites and effectively suppresses Sr segregation. The simultaneous formation of Co<sub><em>m</em></sub>Fe<sub><em>n</em></sub>Ni<sub>3-<em>m</em>-<em>n</em></sub>O<sub>4</sub> spinel phase and NiO nanoparticles induces B-site ion vacancies in the main phase, therefore facilitates the formation of oxygen vacancies. Additionally, the presence of Co<sub><em>m</em></sub>Fe<sub><em>n</em></sub>Ni<sub>3-<em>m</em>-<em>n</em></sub>O<sub>4</sub>/NiO/PSCFN heterointerfaces promotes oxygen adsorption and transfer. The strong interactions among Co<sub><em>m</em></sub>Fe<sub><em>n</em></sub>Ni<sub>3-<em>m</em>-<em>n</em></sub>O<sub>4</sub>, NiO, and PSCFN significantly enhance the structural stability. At 800 °C, Reo2-PSCFN0.1 achieves an output performance of 1.12 W cm<sup>−2</sup>, representing a 36.6 % enhancement compared to PSCFN0.1. Moreover, the Rp of Reo2-PSCFN0.1 is merely 0.0186 Ω cm<sup>2</sup>, marking a 40.4 % decrease relative to PSCFN0.1. This temperature-driven reduction-reoxidation strategy shows great promise as a novel approach for creating high-performance IT-SOFC cathodes.</div></div>","PeriodicalId":10660,"journal":{"name":"Composites Part B: Engineering","volume":"288 ","pages":"Article 111917"},"PeriodicalIF":12.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature-controlled in-situ construction of composition-tunable nanoparticle-decorated SOFC cathodes with enhanced oxygen reduction kinetics and CO2 tolerance\",\"authors\":\"Chuangang Yao , Baixi Xia , Haixia Zhang , Haocong Wang , Wenwen Zhang , Xiaoshi Lang , Kedi Cai\",\"doi\":\"10.1016/j.compositesb.2024.111917\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High oxygen reduction reaction (ORR) catalytic activity and CO<sub>2</sub> resistance of the cathode are fundamental to the commercial application of solid oxide fuel cells (SOFCs). Therefore, we develop a temperature-driven reduction-reoxidation strategy to in-situ construct heterostructured perovskite cathodes decorated with different nanoparticles by controlling the reduction temperature. For (Pr<sub>0.4</sub>Sr<sub>0.6</sub>)<sub>0.95</sub>Co<sub>0.2</sub>Fe<sub>0.8-<em>x</em></sub>Ni<sub><em>x</em></sub>O<sub>3-<em>δ</em></sub> (PSCFN, <em>x</em> = 0.05, 0.1), reduction (@700 °C)-reoxidation results in the exsolution of a Co<sub><em>m</em></sub>Fe<sub><em>n</em></sub>Ni<sub>3-<em>m</em>-<em>n</em></sub>O<sub>4</sub> spinel phase on the perovskite scaffold surface, while reduction (@750 °C)-reoxidation leads to the formation of both Co<sub><em>m</em></sub>Fe<sub><em>n</em></sub>Ni<sub>3-<em>m</em>-<em>n</em></sub>O<sub>4</sub> spinel phase and NiO nanoparticles. The exsolution of these highly active species increases the quantity of oxygen reduction active sites and effectively suppresses Sr segregation. The simultaneous formation of Co<sub><em>m</em></sub>Fe<sub><em>n</em></sub>Ni<sub>3-<em>m</em>-<em>n</em></sub>O<sub>4</sub> spinel phase and NiO nanoparticles induces B-site ion vacancies in the main phase, therefore facilitates the formation of oxygen vacancies. Additionally, the presence of Co<sub><em>m</em></sub>Fe<sub><em>n</em></sub>Ni<sub>3-<em>m</em>-<em>n</em></sub>O<sub>4</sub>/NiO/PSCFN heterointerfaces promotes oxygen adsorption and transfer. The strong interactions among Co<sub><em>m</em></sub>Fe<sub><em>n</em></sub>Ni<sub>3-<em>m</em>-<em>n</em></sub>O<sub>4</sub>, NiO, and PSCFN significantly enhance the structural stability. At 800 °C, Reo2-PSCFN0.1 achieves an output performance of 1.12 W cm<sup>−2</sup>, representing a 36.6 % enhancement compared to PSCFN0.1. Moreover, the Rp of Reo2-PSCFN0.1 is merely 0.0186 Ω cm<sup>2</sup>, marking a 40.4 % decrease relative to PSCFN0.1. This temperature-driven reduction-reoxidation strategy shows great promise as a novel approach for creating high-performance IT-SOFC cathodes.</div></div>\",\"PeriodicalId\":10660,\"journal\":{\"name\":\"Composites Part B: Engineering\",\"volume\":\"288 \",\"pages\":\"Article 111917\"},\"PeriodicalIF\":12.7000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Part B: Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359836824007297\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part B: Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359836824007297","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
阴极的高氧还原反应(ORR)催化活性和抗二氧化碳性能是固体氧化物燃料电池(SOFC)商业化应用的基础。因此,我们开发了一种温度驱动的还原-氧化策略,通过控制还原温度,在原位构建装饰有不同纳米粒子的异质结构包晶阴极。对于(Pr0.4Sr0.6)0.95Co0.2Fe0.8-xNixO3-δ(PSCFN,x = 0.05,0.1),还原(@700 ℃)-氧化反应导致包晶支架表面ComFenNi3-m-nO4尖晶石相的溶解,而还原(@750 ℃)-氧化反应则导致ComFenNi3-m-nO4尖晶石相和NiO纳米颗粒的形成。这些高活性物种的溶出增加了氧还原活性位点的数量,并有效抑制了硒偏析。ComFenNi3-m-nO4 尖晶石相和 NiO 纳米粒子的同时形成诱导了主相中的 B 位离子空位,从而促进了氧空位的形成。此外,ComFenNi3-m-nO4/NiO/PSCFN 异质界面的存在促进了氧的吸附和转移。ComFenNi3-m-nO4、NiO 和 PSCFN 之间的强相互作用显著提高了结构的稳定性。在 800 °C 时,Reo2-PSCFN0.1 的输出性能达到 1.12 W cm-2,与 PSCFN0.1 相比提高了 36.6%。此外,Reo2-PSCFN0.1 的 Rp 仅为 0.0186 Ω cm2,比 PSCFN0.1 降低了 40.4%。这种温度驱动的还原-氧化策略作为一种新型方法,在制造高性能 IT-SOFC 阴极方面显示出巨大的前景。
Temperature-controlled in-situ construction of composition-tunable nanoparticle-decorated SOFC cathodes with enhanced oxygen reduction kinetics and CO2 tolerance
High oxygen reduction reaction (ORR) catalytic activity and CO2 resistance of the cathode are fundamental to the commercial application of solid oxide fuel cells (SOFCs). Therefore, we develop a temperature-driven reduction-reoxidation strategy to in-situ construct heterostructured perovskite cathodes decorated with different nanoparticles by controlling the reduction temperature. For (Pr0.4Sr0.6)0.95Co0.2Fe0.8-xNixO3-δ (PSCFN, x = 0.05, 0.1), reduction (@700 °C)-reoxidation results in the exsolution of a ComFenNi3-m-nO4 spinel phase on the perovskite scaffold surface, while reduction (@750 °C)-reoxidation leads to the formation of both ComFenNi3-m-nO4 spinel phase and NiO nanoparticles. The exsolution of these highly active species increases the quantity of oxygen reduction active sites and effectively suppresses Sr segregation. The simultaneous formation of ComFenNi3-m-nO4 spinel phase and NiO nanoparticles induces B-site ion vacancies in the main phase, therefore facilitates the formation of oxygen vacancies. Additionally, the presence of ComFenNi3-m-nO4/NiO/PSCFN heterointerfaces promotes oxygen adsorption and transfer. The strong interactions among ComFenNi3-m-nO4, NiO, and PSCFN significantly enhance the structural stability. At 800 °C, Reo2-PSCFN0.1 achieves an output performance of 1.12 W cm−2, representing a 36.6 % enhancement compared to PSCFN0.1. Moreover, the Rp of Reo2-PSCFN0.1 is merely 0.0186 Ω cm2, marking a 40.4 % decrease relative to PSCFN0.1. This temperature-driven reduction-reoxidation strategy shows great promise as a novel approach for creating high-performance IT-SOFC cathodes.
期刊介绍:
Composites Part B: Engineering is a journal that publishes impactful research of high quality on composite materials. This research is supported by fundamental mechanics and materials science and engineering approaches. The targeted research can cover a wide range of length scales, ranging from nano to micro and meso, and even to the full product and structure level. The journal specifically focuses on engineering applications that involve high performance composites. These applications can range from low volume and high cost to high volume and low cost composite development.
The main goal of the journal is to provide a platform for the prompt publication of original and high quality research. The emphasis is on design, development, modeling, validation, and manufacturing of engineering details and concepts. The journal welcomes both basic research papers and proposals for review articles. Authors are encouraged to address challenges across various application areas. These areas include, but are not limited to, aerospace, automotive, and other surface transportation. The journal also covers energy-related applications, with a focus on renewable energy. Other application areas include infrastructure, off-shore and maritime projects, health care technology, and recreational products.