实施二氧化碳制化学品工艺的技术经济比较分析

IF 3.7 3区 工程技术 Q2 ENGINEERING, CHEMICAL Chinese Journal of Chemical Engineering Pub Date : 2024-11-01 DOI:10.1016/j.cjche.2024.07.013
Zhun Li , Jinyang Zhao , Ping Li , Yadong Yu , Chenxi Cao
{"title":"实施二氧化碳制化学品工艺的技术经济比较分析","authors":"Zhun Li ,&nbsp;Jinyang Zhao ,&nbsp;Ping Li ,&nbsp;Yadong Yu ,&nbsp;Chenxi Cao","doi":"10.1016/j.cjche.2024.07.013","DOIUrl":null,"url":null,"abstract":"<div><div>CO<sub>2</sub>-based carbon-neutral organics production processes could potentially reshape the chemical industry. However, their feasibility and net carbon footprint rely strongly on the sources of H<sub>2</sub>. Herein, we present a comprehensive comparative techno-economic analysis of CO<sub>2</sub>-based methanol (CO<sub>2</sub>TM) and α-olefins (CO<sub>2</sub>TO) manufacturing using various feedstock supply modes: (1) the standalone mode with external CO<sub>2</sub> but H<sub>2</sub> from on-site water electrolysis, (2) the integrated mode with both CO<sub>2</sub> and H<sub>2</sub> recovered from coal-chemical plants, and (3) the integrated mode with recycled CO<sub>2</sub> but H<sub>2</sub> from on-site water electrolysis. The integration of CO<sub>2</sub>TM and CO<sub>2</sub>TO into coal-to-olefins (CTO) and coal-to-methanol (CTM) facilities is currently cost-effective and can reduce net CO<sub>2</sub> emissions by 65.7% and 68.5%, resulting in a three-fold and two-fold increase in carbon efficiency, respectively. As carbon tax policies and electrolysis technologies continue to evolve, standalone CO<sub>2</sub>TM and CO<sub>2</sub>TO are projected to become more economically competitive than CTO and CTM by 2035–2045.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comparative techno-economic analysis for implementation of carbon dioxide to chemicals processes\",\"authors\":\"Zhun Li ,&nbsp;Jinyang Zhao ,&nbsp;Ping Li ,&nbsp;Yadong Yu ,&nbsp;Chenxi Cao\",\"doi\":\"10.1016/j.cjche.2024.07.013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>CO<sub>2</sub>-based carbon-neutral organics production processes could potentially reshape the chemical industry. However, their feasibility and net carbon footprint rely strongly on the sources of H<sub>2</sub>. Herein, we present a comprehensive comparative techno-economic analysis of CO<sub>2</sub>-based methanol (CO<sub>2</sub>TM) and α-olefins (CO<sub>2</sub>TO) manufacturing using various feedstock supply modes: (1) the standalone mode with external CO<sub>2</sub> but H<sub>2</sub> from on-site water electrolysis, (2) the integrated mode with both CO<sub>2</sub> and H<sub>2</sub> recovered from coal-chemical plants, and (3) the integrated mode with recycled CO<sub>2</sub> but H<sub>2</sub> from on-site water electrolysis. The integration of CO<sub>2</sub>TM and CO<sub>2</sub>TO into coal-to-olefins (CTO) and coal-to-methanol (CTM) facilities is currently cost-effective and can reduce net CO<sub>2</sub> emissions by 65.7% and 68.5%, resulting in a three-fold and two-fold increase in carbon efficiency, respectively. As carbon tax policies and electrolysis technologies continue to evolve, standalone CO<sub>2</sub>TM and CO<sub>2</sub>TO are projected to become more economically competitive than CTO and CTM by 2035–2045.</div></div>\",\"PeriodicalId\":9966,\"journal\":{\"name\":\"Chinese Journal of Chemical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1004954124002763\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954124002763","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于二氧化碳的碳中性有机物生产工艺有可能重塑化学工业。然而,其可行性和净碳足迹在很大程度上取决于 H2 的来源。在此,我们对基于二氧化碳的甲醇(CO2TM)和α-烯烃(CO2TO)生产进行了全面的技术经济比较分析,并采用了不同的原料供应模式:(1) 利用外部二氧化碳但利用现场电解水制取 H2 的独立模式,(2) 利用从煤化工厂回收的二氧化碳和 H2 的集成模式,以及 (3) 利用回收的二氧化碳但利用现场电解水制取 H2 的集成模式。目前,将 CO2TM 和 CO2TO 集成到煤制烯烃(CTO)和煤制甲醇(CTM)设施中具有成本效益,可减少 65.7% 和 68.5% 的二氧化碳净排放量,使碳效率分别提高三倍和两倍。随着碳税政策和电解技术的不断发展,预计到 2035-2045 年,独立的 CO2TM 和 CO2TO 将比 CTO 和 CTM 更具经济竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comparative techno-economic analysis for implementation of carbon dioxide to chemicals processes
CO2-based carbon-neutral organics production processes could potentially reshape the chemical industry. However, their feasibility and net carbon footprint rely strongly on the sources of H2. Herein, we present a comprehensive comparative techno-economic analysis of CO2-based methanol (CO2TM) and α-olefins (CO2TO) manufacturing using various feedstock supply modes: (1) the standalone mode with external CO2 but H2 from on-site water electrolysis, (2) the integrated mode with both CO2 and H2 recovered from coal-chemical plants, and (3) the integrated mode with recycled CO2 but H2 from on-site water electrolysis. The integration of CO2TM and CO2TO into coal-to-olefins (CTO) and coal-to-methanol (CTM) facilities is currently cost-effective and can reduce net CO2 emissions by 65.7% and 68.5%, resulting in a three-fold and two-fold increase in carbon efficiency, respectively. As carbon tax policies and electrolysis technologies continue to evolve, standalone CO2TM and CO2TO are projected to become more economically competitive than CTO and CTM by 2035–2045.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Chemical Engineering
Chinese Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
6.60
自引率
5.30%
发文量
4309
审稿时长
31 days
期刊介绍: The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors. The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.
期刊最新文献
Steady-state and dynamic simulation of gas phase polyethylene process Efficient and eco-friendly carbon dioxide capture with metal phosphate catalysts in monoethanolamine solutions Beneficial synergetic effect of feedstock characteristics and reaction conditions on bio crude production from hydrothermal liquefaction of mixed residential waste Synthesis of flexible inter-plant heat exchanger networks: A decomposition method considering intermedium fluid circles Enhanced electrochemical nitrate removal from groundwater by simply calcined Ti nanopores with modified surface characters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1