优化超声辅助提取草豆蔻根茎中的生物活性化合物:整合中心复合设计、高斯过程回归和多目标灰狼优化方法

IF 3.7 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Process Biochemistry Pub Date : 2024-10-23 DOI:10.1016/j.procbio.2024.10.009
Hamza Moussa , Farid Dahmoune , Sabrina Lekmine , Amal Mameri , Hichem Tahraoui , Sarah Hamid , Nourelimane Benzitoune , Nassim Moula , Jie Zhang , Abdeltif Amrane
{"title":"优化超声辅助提取草豆蔻根茎中的生物活性化合物:整合中心复合设计、高斯过程回归和多目标灰狼优化方法","authors":"Hamza Moussa ,&nbsp;Farid Dahmoune ,&nbsp;Sabrina Lekmine ,&nbsp;Amal Mameri ,&nbsp;Hichem Tahraoui ,&nbsp;Sarah Hamid ,&nbsp;Nourelimane Benzitoune ,&nbsp;Nassim Moula ,&nbsp;Jie Zhang ,&nbsp;Abdeltif Amrane","doi":"10.1016/j.procbio.2024.10.009","DOIUrl":null,"url":null,"abstract":"<div><div>The prediction of ultrasound-assisted extraction (UAE) for total phenolic content (TPC) and total flavonoid content (TFC) from <em>Carthamus caeruleus</em> L. rhizomes was conducted using a Gaussian process regression model (GPR) with a multi-objective Grey Wolf optimization approach (MOGWO). A central composite design (CCD) was employed first, examining ethanol concentration, temperature, time, and solvent-to-solid ratio as independent variables. TPC and TFC responses were analyzed under various conditions, revealing significant quadratic and interaction effects (p &lt; 0.05). The GPR was then utilized to predict TPC and TFC, showing high accuracy with correlation coefficients near 1 and minimal root mean square error (RMSE) values. To simultaneously maximize TPC and TFC, the MOGWO was used in a multi-objective framework. Validation through CCD and GPR highlighted GPR's superior predictive accuracy. Optimal conditions (10 % ethanol, 40°C, 20 minutes sonication, and 50 mL g<sup>−1</sup> solvent to solid ratio) showed significant discrepancies in CCD predictions but high accuracy in GPR predictions. An interactive tool predicts TPC and TFC using CCD and GPR models. Users input extraction parameters and receive predictions, with a GWO-based optimization module for optimal conditions. The interface enables model comparison, improves process understanding, and optimizes bioactive compound extraction.</div></div>","PeriodicalId":20811,"journal":{"name":"Process Biochemistry","volume":"147 ","pages":"Pages 476-488"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of ultrasound-assisted extraction of bioactive compounds from Carthamus caeruleus L. rhizome: Integrating central composite design, Gaussian process regression, and multi-objective Grey Wolf optimization approaches\",\"authors\":\"Hamza Moussa ,&nbsp;Farid Dahmoune ,&nbsp;Sabrina Lekmine ,&nbsp;Amal Mameri ,&nbsp;Hichem Tahraoui ,&nbsp;Sarah Hamid ,&nbsp;Nourelimane Benzitoune ,&nbsp;Nassim Moula ,&nbsp;Jie Zhang ,&nbsp;Abdeltif Amrane\",\"doi\":\"10.1016/j.procbio.2024.10.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The prediction of ultrasound-assisted extraction (UAE) for total phenolic content (TPC) and total flavonoid content (TFC) from <em>Carthamus caeruleus</em> L. rhizomes was conducted using a Gaussian process regression model (GPR) with a multi-objective Grey Wolf optimization approach (MOGWO). A central composite design (CCD) was employed first, examining ethanol concentration, temperature, time, and solvent-to-solid ratio as independent variables. TPC and TFC responses were analyzed under various conditions, revealing significant quadratic and interaction effects (p &lt; 0.05). The GPR was then utilized to predict TPC and TFC, showing high accuracy with correlation coefficients near 1 and minimal root mean square error (RMSE) values. To simultaneously maximize TPC and TFC, the MOGWO was used in a multi-objective framework. Validation through CCD and GPR highlighted GPR's superior predictive accuracy. Optimal conditions (10 % ethanol, 40°C, 20 minutes sonication, and 50 mL g<sup>−1</sup> solvent to solid ratio) showed significant discrepancies in CCD predictions but high accuracy in GPR predictions. An interactive tool predicts TPC and TFC using CCD and GPR models. Users input extraction parameters and receive predictions, with a GWO-based optimization module for optimal conditions. The interface enables model comparison, improves process understanding, and optimizes bioactive compound extraction.</div></div>\",\"PeriodicalId\":20811,\"journal\":{\"name\":\"Process Biochemistry\",\"volume\":\"147 \",\"pages\":\"Pages 476-488\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Process Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135951132400343X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Process Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135951132400343X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

采用高斯过程回归模型(GPR)和多目标灰狼优化方法(MOGWO),对超声辅助萃取(UAE)提取草豆蔻根茎中的总酚含量(TPC)和总黄酮含量(TFC)进行了预测。首先采用中心复合设计(CCD),将乙醇浓度、温度、时间和溶剂与固体比率作为自变量进行研究。对各种条件下的 TPC 和 TFC 反应进行了分析,发现了显著的二次效应和交互效应(p < 0.05)。然后利用 GPR 预测 TPC 和 TFC,结果显示相关系数接近 1 且均方根误差 (RMSE) 值最小,准确性很高。为了同时使 TPC 和 TFC 最大化,在多目标框架中使用了 MOGWO。通过 CCD 和 GPR 验证,GPR 的预测准确性更胜一筹。最佳条件(10% 乙醇、40°C、20 分钟超声处理和 50 mL g-1 溶剂与固体之比)表明,CCD 预测结果存在显著差异,但 GPR 预测结果具有很高的准确性。交互式工具利用 CCD 和 GPR 模型预测 TPC 和 TFC。用户输入萃取参数并接收预测结果,还可通过基于 GWO 的优化模块获得最佳条件。通过该界面可以进行模型比较,加深对工艺的理解,并优化生物活性化合物的提取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of ultrasound-assisted extraction of bioactive compounds from Carthamus caeruleus L. rhizome: Integrating central composite design, Gaussian process regression, and multi-objective Grey Wolf optimization approaches
The prediction of ultrasound-assisted extraction (UAE) for total phenolic content (TPC) and total flavonoid content (TFC) from Carthamus caeruleus L. rhizomes was conducted using a Gaussian process regression model (GPR) with a multi-objective Grey Wolf optimization approach (MOGWO). A central composite design (CCD) was employed first, examining ethanol concentration, temperature, time, and solvent-to-solid ratio as independent variables. TPC and TFC responses were analyzed under various conditions, revealing significant quadratic and interaction effects (p < 0.05). The GPR was then utilized to predict TPC and TFC, showing high accuracy with correlation coefficients near 1 and minimal root mean square error (RMSE) values. To simultaneously maximize TPC and TFC, the MOGWO was used in a multi-objective framework. Validation through CCD and GPR highlighted GPR's superior predictive accuracy. Optimal conditions (10 % ethanol, 40°C, 20 minutes sonication, and 50 mL g−1 solvent to solid ratio) showed significant discrepancies in CCD predictions but high accuracy in GPR predictions. An interactive tool predicts TPC and TFC using CCD and GPR models. Users input extraction parameters and receive predictions, with a GWO-based optimization module for optimal conditions. The interface enables model comparison, improves process understanding, and optimizes bioactive compound extraction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Process Biochemistry
Process Biochemistry 生物-工程:化工
CiteScore
8.30
自引率
4.50%
发文量
374
审稿时长
53 days
期刊介绍: Process Biochemistry is an application-orientated research journal devoted to reporting advances with originality and novelty, in the science and technology of the processes involving bioactive molecules and living organisms. These processes concern the production of useful metabolites or materials, or the removal of toxic compounds using tools and methods of current biology and engineering. Its main areas of interest include novel bioprocesses and enabling technologies (such as nanobiotechnology, tissue engineering, directed evolution, metabolic engineering, systems biology, and synthetic biology) applicable in food (nutraceutical), healthcare (medical, pharmaceutical, cosmetic), energy (biofuels), environmental, and biorefinery industries and their underlying biological and engineering principles.
期刊最新文献
A comprehensive analysis of photothermal therapy (PTT) and photodynamic therapy (PDT) for the treatment of cancer Growth in traditional fermented soybeans-related research (tempeh, natto, doenjang, chungkookjang, douchi, meju, kinema, oncom, and tauco) from 1928 to 2024, following the omics emergence and trend in functional food Immobilization of laccase on Fe3O4@SiO2 core@shell magnetic nanoparticles for methylene blue biodegradation Investigating the effect of linker peptides on the fragmentation of Fc-fusion proteins in transient gene expression of mammalian cells Structural characterization and potential antitumor and immunostimulatory activities of mycelial polysaccharides from Ophiocordyceps gracilis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1