全局支配问题的算法

IF 4.1 2区 工程技术 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computers & Operations Research Pub Date : 2024-10-23 DOI:10.1016/j.cor.2024.106876
Ernesto Parra Inza , Nodari Vakhania , José María Sigarreta Almira , Frank Ángel Hernández Mira
{"title":"全局支配问题的算法","authors":"Ernesto Parra Inza ,&nbsp;Nodari Vakhania ,&nbsp;José María Sigarreta Almira ,&nbsp;Frank Ángel Hernández Mira","doi":"10.1016/j.cor.2024.106876","DOIUrl":null,"url":null,"abstract":"<div><div>A dominating set <span><math><mi>D</mi></math></span> in a graph <span><math><mi>G</mi></math></span> is a subset of its vertices such that every its vertex that does not belong to set <span><math><mi>D</mi></math></span> is adjacent to at least one vertex from set <span><math><mi>D</mi></math></span>. A set of vertices of graph <span><math><mi>G</mi></math></span> is a global dominating set if it is a dominating set for both, graph <span><math><mi>G</mi></math></span> and its complement. The objective is to find a global dominating set with the minimum cardinality. Neither exact nor approximation algorithm existed for the problem known to be <span><math><mrow><mi>N</mi><mi>P</mi></mrow></math></span>-hard. We show that it remains <span><math><mrow><mi>N</mi><mi>P</mi></mrow></math></span>-hard for restricted types of graphs. At the same time, we specify some families of graphs for which the three heuristics, that we propose here, are optimal. Given the complexity status of the problem, our aim was the development of powerful heuristic algorithms that work well in practice for large-scaled instances. To measure the efficiency of our heuristics, we formulated the problem as an integer linear program (ILP) and also we developed an alternative implicit enumeration (IE) algorithm obtaining guaranteed optimal solutions for the existing benchmark instances with up to 8000 vertices. Remarkably, for 56.75% of these instances, at least one of our heuristics also created an optimal solution, where an average absolute error for the remaining instances was a single vertex. The average approximation ratio was 1.005, whereas for the largest benchmark instances with up to 25000 vertices our heuristics delivered solutions in less than 2 min.</div></div>","PeriodicalId":10542,"journal":{"name":"Computers & Operations Research","volume":"173 ","pages":"Article 106876"},"PeriodicalIF":4.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms for the global domination problem\",\"authors\":\"Ernesto Parra Inza ,&nbsp;Nodari Vakhania ,&nbsp;José María Sigarreta Almira ,&nbsp;Frank Ángel Hernández Mira\",\"doi\":\"10.1016/j.cor.2024.106876\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A dominating set <span><math><mi>D</mi></math></span> in a graph <span><math><mi>G</mi></math></span> is a subset of its vertices such that every its vertex that does not belong to set <span><math><mi>D</mi></math></span> is adjacent to at least one vertex from set <span><math><mi>D</mi></math></span>. A set of vertices of graph <span><math><mi>G</mi></math></span> is a global dominating set if it is a dominating set for both, graph <span><math><mi>G</mi></math></span> and its complement. The objective is to find a global dominating set with the minimum cardinality. Neither exact nor approximation algorithm existed for the problem known to be <span><math><mrow><mi>N</mi><mi>P</mi></mrow></math></span>-hard. We show that it remains <span><math><mrow><mi>N</mi><mi>P</mi></mrow></math></span>-hard for restricted types of graphs. At the same time, we specify some families of graphs for which the three heuristics, that we propose here, are optimal. Given the complexity status of the problem, our aim was the development of powerful heuristic algorithms that work well in practice for large-scaled instances. To measure the efficiency of our heuristics, we formulated the problem as an integer linear program (ILP) and also we developed an alternative implicit enumeration (IE) algorithm obtaining guaranteed optimal solutions for the existing benchmark instances with up to 8000 vertices. Remarkably, for 56.75% of these instances, at least one of our heuristics also created an optimal solution, where an average absolute error for the remaining instances was a single vertex. The average approximation ratio was 1.005, whereas for the largest benchmark instances with up to 25000 vertices our heuristics delivered solutions in less than 2 min.</div></div>\",\"PeriodicalId\":10542,\"journal\":{\"name\":\"Computers & Operations Research\",\"volume\":\"173 \",\"pages\":\"Article 106876\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Operations Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0305054824003484\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Operations Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0305054824003484","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

图 G 中的支配集 D 是其顶点的一个子集,该子集的每个不属于集合 D 的顶点都至少与来自集合 D 的一个顶点相邻。如果图 G 的顶点集合对图 G 及其补集都是支配集,那么该顶点集合就是全局支配集。全局支配集的目标是找到一个心数最小的全局支配集。对于这个已知的 NP 难问题,既没有精确算法,也没有近似算法。我们证明,对于受限类型的图,该问题仍然是 NP-hard。同时,我们还指出了一些图族,对于这些图族,我们在此提出的三种启发式算法是最优的。考虑到问题的复杂性,我们的目标是开发出强大的启发式算法,并在实践中很好地应用于大规模实例。为了衡量我们的启发式算法的效率,我们将问题表述为整数线性规划(ILP),并开发了另一种隐式枚举(IE)算法,该算法能在顶点多达 8000 个的现有基准实例中获得有保证的最优解。值得注意的是,对于其中 56.75% 的实例,我们的启发式算法中至少有一种也能找到最优解,而其余实例的平均绝对误差仅为一个顶点。平均近似率为 1.005,而对于高达 25000 个顶点的最大基准实例,我们的启发式方法在不到 2 分钟的时间内就给出了解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Algorithms for the global domination problem
A dominating set D in a graph G is a subset of its vertices such that every its vertex that does not belong to set D is adjacent to at least one vertex from set D. A set of vertices of graph G is a global dominating set if it is a dominating set for both, graph G and its complement. The objective is to find a global dominating set with the minimum cardinality. Neither exact nor approximation algorithm existed for the problem known to be NP-hard. We show that it remains NP-hard for restricted types of graphs. At the same time, we specify some families of graphs for which the three heuristics, that we propose here, are optimal. Given the complexity status of the problem, our aim was the development of powerful heuristic algorithms that work well in practice for large-scaled instances. To measure the efficiency of our heuristics, we formulated the problem as an integer linear program (ILP) and also we developed an alternative implicit enumeration (IE) algorithm obtaining guaranteed optimal solutions for the existing benchmark instances with up to 8000 vertices. Remarkably, for 56.75% of these instances, at least one of our heuristics also created an optimal solution, where an average absolute error for the remaining instances was a single vertex. The average approximation ratio was 1.005, whereas for the largest benchmark instances with up to 25000 vertices our heuristics delivered solutions in less than 2 min.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Operations Research
Computers & Operations Research 工程技术-工程:工业
CiteScore
8.60
自引率
8.70%
发文量
292
审稿时长
8.5 months
期刊介绍: Operations research and computers meet in a large number of scientific fields, many of which are of vital current concern to our troubled society. These include, among others, ecology, transportation, safety, reliability, urban planning, economics, inventory control, investment strategy and logistics (including reverse logistics). Computers & Operations Research provides an international forum for the application of computers and operations research techniques to problems in these and related fields.
期刊最新文献
Editorial Board An accelerated Benders decomposition method for distributionally robust sustainable medical waste location and transportation problem Lexicographic optimization-based approaches to learning a representative model for multi-criteria sorting with non-monotonic criteria Portfolio optimisation: Bridging the gap between theory and practice A Q-learning driven multi-objective evolutionary algorithm for worker fatigue dual-resource-constrained distributed hybrid flow shop
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1