Alicreance Hiyadutuje , Michael J. Kosch , John Bosco Habarulema , Xiangcai Chen , Judy A.E. Stephenson , Tshimangadzo Merline Matamba , Mpho Tshisaphungo
{"title":"在中山站上空观测到部分受高纬度移动电离层扰动调制的零星 E 层高度","authors":"Alicreance Hiyadutuje , Michael J. Kosch , John Bosco Habarulema , Xiangcai Chen , Judy A.E. Stephenson , Tshimangadzo Merline Matamba , Mpho Tshisaphungo","doi":"10.1016/j.jastp.2024.106377","DOIUrl":null,"url":null,"abstract":"<div><div>At Zhongshan (69° S, 76° E) Antarctica we investigate the sporadic <span><math><mi>E</mi></math></span> (<span><math><mrow><mi>E</mi><mi>s</mi></mrow></math></span>)-layer virtual height modulation, observed by an ionosonde, during the passage of the Medium-Scale Traveling Ionospheric Disturbances (MSTIDs), observed by a SuperDARN radar. Two events were identified, on 04 October 2011 at 07:00 - 12:00 UT and 29 February 2012 at 00:00 - 04:00 UT with periods of <span><math><mo>∼</mo></math></span>15.0 and <span><math><mo>∼</mo></math></span>12.0 min, respectively. The magnitude of average height modulation of the <span><math><mrow><mi>E</mi><mi>s</mi></mrow></math></span>-layer was <span><math><mo>∼</mo></math></span>3.7 to <span><math><mo>∼</mo></math></span>17.1 and <span><math><mo>∼</mo></math></span>0.5 to <span><math><mo>∼</mo></math></span>7.3 km, respectively, with the same periods as the MSTIDs. Ray tracing during the events shows that the likely MSTID propagation was up to <span><math><mo>∼</mo></math></span>300 km in the ionospheric <span><math><mi>F</mi></math></span>-region. The computed ion vertical drift velocity using SuperDARN radar and magnetometer data, and <span><math><mrow><mi>E</mi><mi>s</mi></mrow></math></span>-layer altitude modulation observed by the ionosonde have moderate to strong positive correlation of 0.71 ± 0.22 and 0.51 ± 0.16, respectively. We show that the MSTIDs polarization electric field, which is mapped down from the <span><math><mi>F</mi></math></span>-region along the near-vertical magnetic field, moderately contributes to the modulation of the <span><math><mrow><mi>E</mi><mi>s</mi></mrow></math></span> layer altitude via the <span><math><mrow><mi>E</mi><mo>×</mo><mi>B</mi></mrow></math></span> drift mechanism.</div></div>","PeriodicalId":15096,"journal":{"name":"Journal of Atmospheric and Solar-Terrestrial Physics","volume":"265 ","pages":"Article 106377"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation of sporadic E layer altitude partially modulated by the Traveling Ionospheric Disturbances at high latitudes over Zhongshan station\",\"authors\":\"Alicreance Hiyadutuje , Michael J. Kosch , John Bosco Habarulema , Xiangcai Chen , Judy A.E. Stephenson , Tshimangadzo Merline Matamba , Mpho Tshisaphungo\",\"doi\":\"10.1016/j.jastp.2024.106377\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>At Zhongshan (69° S, 76° E) Antarctica we investigate the sporadic <span><math><mi>E</mi></math></span> (<span><math><mrow><mi>E</mi><mi>s</mi></mrow></math></span>)-layer virtual height modulation, observed by an ionosonde, during the passage of the Medium-Scale Traveling Ionospheric Disturbances (MSTIDs), observed by a SuperDARN radar. Two events were identified, on 04 October 2011 at 07:00 - 12:00 UT and 29 February 2012 at 00:00 - 04:00 UT with periods of <span><math><mo>∼</mo></math></span>15.0 and <span><math><mo>∼</mo></math></span>12.0 min, respectively. The magnitude of average height modulation of the <span><math><mrow><mi>E</mi><mi>s</mi></mrow></math></span>-layer was <span><math><mo>∼</mo></math></span>3.7 to <span><math><mo>∼</mo></math></span>17.1 and <span><math><mo>∼</mo></math></span>0.5 to <span><math><mo>∼</mo></math></span>7.3 km, respectively, with the same periods as the MSTIDs. Ray tracing during the events shows that the likely MSTID propagation was up to <span><math><mo>∼</mo></math></span>300 km in the ionospheric <span><math><mi>F</mi></math></span>-region. The computed ion vertical drift velocity using SuperDARN radar and magnetometer data, and <span><math><mrow><mi>E</mi><mi>s</mi></mrow></math></span>-layer altitude modulation observed by the ionosonde have moderate to strong positive correlation of 0.71 ± 0.22 and 0.51 ± 0.16, respectively. We show that the MSTIDs polarization electric field, which is mapped down from the <span><math><mi>F</mi></math></span>-region along the near-vertical magnetic field, moderately contributes to the modulation of the <span><math><mrow><mi>E</mi><mi>s</mi></mrow></math></span> layer altitude via the <span><math><mrow><mi>E</mi><mo>×</mo><mi>B</mi></mrow></math></span> drift mechanism.</div></div>\",\"PeriodicalId\":15096,\"journal\":{\"name\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"volume\":\"265 \",\"pages\":\"Article 106377\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Atmospheric and Solar-Terrestrial Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1364682624002050\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Atmospheric and Solar-Terrestrial Physics","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364682624002050","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Observation of sporadic E layer altitude partially modulated by the Traveling Ionospheric Disturbances at high latitudes over Zhongshan station
At Zhongshan (69° S, 76° E) Antarctica we investigate the sporadic ()-layer virtual height modulation, observed by an ionosonde, during the passage of the Medium-Scale Traveling Ionospheric Disturbances (MSTIDs), observed by a SuperDARN radar. Two events were identified, on 04 October 2011 at 07:00 - 12:00 UT and 29 February 2012 at 00:00 - 04:00 UT with periods of 15.0 and 12.0 min, respectively. The magnitude of average height modulation of the -layer was 3.7 to 17.1 and 0.5 to 7.3 km, respectively, with the same periods as the MSTIDs. Ray tracing during the events shows that the likely MSTID propagation was up to 300 km in the ionospheric -region. The computed ion vertical drift velocity using SuperDARN radar and magnetometer data, and -layer altitude modulation observed by the ionosonde have moderate to strong positive correlation of 0.71 ± 0.22 and 0.51 ± 0.16, respectively. We show that the MSTIDs polarization electric field, which is mapped down from the -region along the near-vertical magnetic field, moderately contributes to the modulation of the layer altitude via the drift mechanism.
期刊介绍:
The Journal of Atmospheric and Solar-Terrestrial Physics (JASTP) is an international journal concerned with the inter-disciplinary science of the Earth''s atmospheric and space environment, especially the highly varied and highly variable physical phenomena that occur in this natural laboratory and the processes that couple them.
The journal covers the physical processes operating in the troposphere, stratosphere, mesosphere, thermosphere, ionosphere, magnetosphere, the Sun, interplanetary medium, and heliosphere. Phenomena occurring in other "spheres", solar influences on climate, and supporting laboratory measurements are also considered. The journal deals especially with the coupling between the different regions.
Solar flares, coronal mass ejections, and other energetic events on the Sun create interesting and important perturbations in the near-Earth space environment. The physics of such "space weather" is central to the Journal of Atmospheric and Solar-Terrestrial Physics and the journal welcomes papers that lead in the direction of a predictive understanding of the coupled system. Regarding the upper atmosphere, the subjects of aeronomy, geomagnetism and geoelectricity, auroral phenomena, radio wave propagation, and plasma instabilities, are examples within the broad field of solar-terrestrial physics which emphasise the energy exchange between the solar wind, the magnetospheric and ionospheric plasmas, and the neutral gas. In the lower atmosphere, topics covered range from mesoscale to global scale dynamics, to atmospheric electricity, lightning and its effects, and to anthropogenic changes.