{"title":"通过掺杂工程实现透射模式砷化镓光电阴极的不同内置电场:设计与建模","authors":"Zehao Tong , Yijun Zhang , Yu Jiang , Shiman Li , Jianpo Gao , Feng Shi , Hongchang Cheng , Xin Guo , Yunsheng Qian , Yugang Zeng","doi":"10.1016/j.physleta.2024.130009","DOIUrl":null,"url":null,"abstract":"<div><div>In order to enhance the emission performance of transmission-mode GaAs photocathodes used in optoelectronic field, different exponential doping structures are designed for the GaAs emission layer to generate different types of built-in electric fields. These built-in electric fields include the constant, increasing and decreasing types, which can help photoelectron transport toward the emission surface. By solving the one-dimensional continuity equation using the finite difference method, the electron concentration distribution and quantum efficiency of the three types of exponential doping GaAs photocathodes are derived. Meanwhile, the light absorption distributions in the emission layer are simulated by the finite difference time domain method. By comparing the optical absorption distribution and the electron concentration distribution, it is concluded that, among the three types of exponential doping structures, the exponential doping structure generating the increasing built-in electric field has the most sufficient long-wave light absorption capacity and the strongest photoelectron transport ability, thereby achieving the highest quantum efficiency. This theoretical work can help understand the mechanism of improving the photoemission performance of GaAs photocathodes through doping engineering.</div></div>","PeriodicalId":20172,"journal":{"name":"Physics Letters A","volume":"527 ","pages":"Article 130009"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different built-in electric fields for transmission-mode GaAs photocathodes through doping engineering: Design and modeling\",\"authors\":\"Zehao Tong , Yijun Zhang , Yu Jiang , Shiman Li , Jianpo Gao , Feng Shi , Hongchang Cheng , Xin Guo , Yunsheng Qian , Yugang Zeng\",\"doi\":\"10.1016/j.physleta.2024.130009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In order to enhance the emission performance of transmission-mode GaAs photocathodes used in optoelectronic field, different exponential doping structures are designed for the GaAs emission layer to generate different types of built-in electric fields. These built-in electric fields include the constant, increasing and decreasing types, which can help photoelectron transport toward the emission surface. By solving the one-dimensional continuity equation using the finite difference method, the electron concentration distribution and quantum efficiency of the three types of exponential doping GaAs photocathodes are derived. Meanwhile, the light absorption distributions in the emission layer are simulated by the finite difference time domain method. By comparing the optical absorption distribution and the electron concentration distribution, it is concluded that, among the three types of exponential doping structures, the exponential doping structure generating the increasing built-in electric field has the most sufficient long-wave light absorption capacity and the strongest photoelectron transport ability, thereby achieving the highest quantum efficiency. This theoretical work can help understand the mechanism of improving the photoemission performance of GaAs photocathodes through doping engineering.</div></div>\",\"PeriodicalId\":20172,\"journal\":{\"name\":\"Physics Letters A\",\"volume\":\"527 \",\"pages\":\"Article 130009\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters A\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0375960124007035\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters A","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0375960124007035","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Different built-in electric fields for transmission-mode GaAs photocathodes through doping engineering: Design and modeling
In order to enhance the emission performance of transmission-mode GaAs photocathodes used in optoelectronic field, different exponential doping structures are designed for the GaAs emission layer to generate different types of built-in electric fields. These built-in electric fields include the constant, increasing and decreasing types, which can help photoelectron transport toward the emission surface. By solving the one-dimensional continuity equation using the finite difference method, the electron concentration distribution and quantum efficiency of the three types of exponential doping GaAs photocathodes are derived. Meanwhile, the light absorption distributions in the emission layer are simulated by the finite difference time domain method. By comparing the optical absorption distribution and the electron concentration distribution, it is concluded that, among the three types of exponential doping structures, the exponential doping structure generating the increasing built-in electric field has the most sufficient long-wave light absorption capacity and the strongest photoelectron transport ability, thereby achieving the highest quantum efficiency. This theoretical work can help understand the mechanism of improving the photoemission performance of GaAs photocathodes through doping engineering.
期刊介绍:
Physics Letters A offers an exciting publication outlet for novel and frontier physics. It encourages the submission of new research on: condensed matter physics, theoretical physics, nonlinear science, statistical physics, mathematical and computational physics, general and cross-disciplinary physics (including foundations), atomic, molecular and cluster physics, plasma and fluid physics, optical physics, biological physics and nanoscience. No articles on High Energy and Nuclear Physics are published in Physics Letters A. The journal''s high standard and wide dissemination ensures a broad readership amongst the physics community. Rapid publication times and flexible length restrictions give Physics Letters A the edge over other journals in the field.