Wanrui Zhang , Jianchao Zou , Meiyu Liu , Zhibin Han , Yifeng Xiong , Biao Liang , Ning Hu , Weizhao Zhang
{"title":"研究水热条件下纤维-基质界面降解对碳纤维增强聚合物老化过程的作用","authors":"Wanrui Zhang , Jianchao Zou , Meiyu Liu , Zhibin Han , Yifeng Xiong , Biao Liang , Ning Hu , Weizhao Zhang","doi":"10.1016/j.compscitech.2024.110922","DOIUrl":null,"url":null,"abstract":"<div><div>The aqueous environment can deteriorate the fibre-matrix interface of carbon fibre-reinforced polymer (CFRP), significantly impairing the non-fibre-dominated mechanical properties. Thus, this study aimed to quantitatively analyse the impact of interfacial degradation on the hydrothermal ageing mechanism and process of the CFRP. Firstly, entire water absorption process of the CFRP under hydrothermal conditions was divided into three stages according to experimental measurement of its water content. Based on this division of stages, a novel water diffusion model was established for the hydrothermally aged CFRP. To measure the mechanical degradation, tensile tests were conducted on unaged, aged, and redried neat epoxy and transversely positioned unidirectional (UD) CFRP specimens. It was found that the transverse tensile strength degradation of UD CFRP was irreversible due to the permanent interfacial debonding between the fibres and matrix, in contrast to the reversible ageing of the epoxy matrix. To further quantify the fibre-matrix interfacial ageing, physically-based models were established for the degraded interfacial strength of CFRP subjected to hydrothermal conditions. After the characterization of the modelling coefficients, the physically-based models can be employed to predict interfacial strength inside the aged CFRP for various ageing durations. The prediction error was only 4.57 % for the transverse tensile strength of degraded UD CFRP with various ageing durations from the representative volume element (RVE) simulation with its interfacial strength provided by the physically-based models, validating the effectiveness of the proposed physically-based models for degraded fibre-matrix interface under various ageing conditions.</div></div>","PeriodicalId":283,"journal":{"name":"Composites Science and Technology","volume":"259 ","pages":"Article 110922"},"PeriodicalIF":8.3000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the role of fibre-matrix interfacial degradation on the ageing process of carbon fibre-reinforced polymer under hydrothermal conditions\",\"authors\":\"Wanrui Zhang , Jianchao Zou , Meiyu Liu , Zhibin Han , Yifeng Xiong , Biao Liang , Ning Hu , Weizhao Zhang\",\"doi\":\"10.1016/j.compscitech.2024.110922\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The aqueous environment can deteriorate the fibre-matrix interface of carbon fibre-reinforced polymer (CFRP), significantly impairing the non-fibre-dominated mechanical properties. Thus, this study aimed to quantitatively analyse the impact of interfacial degradation on the hydrothermal ageing mechanism and process of the CFRP. Firstly, entire water absorption process of the CFRP under hydrothermal conditions was divided into three stages according to experimental measurement of its water content. Based on this division of stages, a novel water diffusion model was established for the hydrothermally aged CFRP. To measure the mechanical degradation, tensile tests were conducted on unaged, aged, and redried neat epoxy and transversely positioned unidirectional (UD) CFRP specimens. It was found that the transverse tensile strength degradation of UD CFRP was irreversible due to the permanent interfacial debonding between the fibres and matrix, in contrast to the reversible ageing of the epoxy matrix. To further quantify the fibre-matrix interfacial ageing, physically-based models were established for the degraded interfacial strength of CFRP subjected to hydrothermal conditions. After the characterization of the modelling coefficients, the physically-based models can be employed to predict interfacial strength inside the aged CFRP for various ageing durations. The prediction error was only 4.57 % for the transverse tensile strength of degraded UD CFRP with various ageing durations from the representative volume element (RVE) simulation with its interfacial strength provided by the physically-based models, validating the effectiveness of the proposed physically-based models for degraded fibre-matrix interface under various ageing conditions.</div></div>\",\"PeriodicalId\":283,\"journal\":{\"name\":\"Composites Science and Technology\",\"volume\":\"259 \",\"pages\":\"Article 110922\"},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composites Science and Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0266353824004925\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0266353824004925","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Investigating the role of fibre-matrix interfacial degradation on the ageing process of carbon fibre-reinforced polymer under hydrothermal conditions
The aqueous environment can deteriorate the fibre-matrix interface of carbon fibre-reinforced polymer (CFRP), significantly impairing the non-fibre-dominated mechanical properties. Thus, this study aimed to quantitatively analyse the impact of interfacial degradation on the hydrothermal ageing mechanism and process of the CFRP. Firstly, entire water absorption process of the CFRP under hydrothermal conditions was divided into three stages according to experimental measurement of its water content. Based on this division of stages, a novel water diffusion model was established for the hydrothermally aged CFRP. To measure the mechanical degradation, tensile tests were conducted on unaged, aged, and redried neat epoxy and transversely positioned unidirectional (UD) CFRP specimens. It was found that the transverse tensile strength degradation of UD CFRP was irreversible due to the permanent interfacial debonding between the fibres and matrix, in contrast to the reversible ageing of the epoxy matrix. To further quantify the fibre-matrix interfacial ageing, physically-based models were established for the degraded interfacial strength of CFRP subjected to hydrothermal conditions. After the characterization of the modelling coefficients, the physically-based models can be employed to predict interfacial strength inside the aged CFRP for various ageing durations. The prediction error was only 4.57 % for the transverse tensile strength of degraded UD CFRP with various ageing durations from the representative volume element (RVE) simulation with its interfacial strength provided by the physically-based models, validating the effectiveness of the proposed physically-based models for degraded fibre-matrix interface under various ageing conditions.
期刊介绍:
Composites Science and Technology publishes refereed original articles on the fundamental and applied science of engineering composites. The focus of this journal is on polymeric matrix composites with reinforcements/fillers ranging from nano- to macro-scale. CSTE encourages manuscripts reporting unique, innovative contributions to the physics, chemistry, materials science and applied mechanics aspects of advanced composites.
Besides traditional fiber reinforced composites, novel composites with significant potential for engineering applications are encouraged.