异频相干 Φ-OTDR 超低采样率下的相位解调

IF 3.1 3区 物理与天体物理 Q2 INSTRUMENTS & INSTRUMENTATION Infrared Physics & Technology Pub Date : 2024-10-23 DOI:10.1016/j.infrared.2024.105597
Heng Qian , Maojiang Cui , Yingna Li , Chuan Li , Chengli Li
{"title":"异频相干 Φ-OTDR 超低采样率下的相位解调","authors":"Heng Qian ,&nbsp;Maojiang Cui ,&nbsp;Yingna Li ,&nbsp;Chuan Li ,&nbsp;Chengli Li","doi":"10.1016/j.infrared.2024.105597","DOIUrl":null,"url":null,"abstract":"<div><div>Heterodyne coherent phase-sensitive optical time-domain reflectometry(<span><math><mi>Φ</mi></math></span>-OTDR) requires a higher data sampling rate to demodulate phase in the “distance” direction effectively. Aiming at the problem of large amount of demodulated data, we propose a phase demodulation method that can effectively recover disturbance information from ultra-low sampling data. This method demodulates the phase of the two-dimensional reconstructed signal in the “time” direction. Thus, the influence of spectrum aliasing in the “distance” direction caused by undersampling is avoided. The undersampling rate is not limited by the spectrum aliasing effect of the detected signal when using this method to demodulate phase. Therefore, accurate phase information can be retrieved under ultra-low sampling rates, significantly reducing the data for phase demodulation in heterodyne coherent <span><math><mi>Φ</mi></math></span>-OTDR. In the experiment, three sampling rates (100 MSa/s, 10 MSa/s, 1 MSa/s) within the restricted area of the traditional undersampling demodulation method were selected to acquire data, and the proposed method can also accurately demodulate phase information.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":"143 ","pages":"Article 105597"},"PeriodicalIF":3.1000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase Demodulation under Ultra-low sampling rate in heterodyne coherent Φ-OTDR\",\"authors\":\"Heng Qian ,&nbsp;Maojiang Cui ,&nbsp;Yingna Li ,&nbsp;Chuan Li ,&nbsp;Chengli Li\",\"doi\":\"10.1016/j.infrared.2024.105597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Heterodyne coherent phase-sensitive optical time-domain reflectometry(<span><math><mi>Φ</mi></math></span>-OTDR) requires a higher data sampling rate to demodulate phase in the “distance” direction effectively. Aiming at the problem of large amount of demodulated data, we propose a phase demodulation method that can effectively recover disturbance information from ultra-low sampling data. This method demodulates the phase of the two-dimensional reconstructed signal in the “time” direction. Thus, the influence of spectrum aliasing in the “distance” direction caused by undersampling is avoided. The undersampling rate is not limited by the spectrum aliasing effect of the detected signal when using this method to demodulate phase. Therefore, accurate phase information can be retrieved under ultra-low sampling rates, significantly reducing the data for phase demodulation in heterodyne coherent <span><math><mi>Φ</mi></math></span>-OTDR. In the experiment, three sampling rates (100 MSa/s, 10 MSa/s, 1 MSa/s) within the restricted area of the traditional undersampling demodulation method were selected to acquire data, and the proposed method can also accurately demodulate phase information.</div></div>\",\"PeriodicalId\":13549,\"journal\":{\"name\":\"Infrared Physics & Technology\",\"volume\":\"143 \",\"pages\":\"Article 105597\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrared Physics & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135044952400481X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135044952400481X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

异相相干相敏光时域反射仪(Φ-OTDR)需要较高的数据采样率才能有效地对 "距离 "方向的相位进行解调。针对解调数据量大的问题,我们提出了一种相位解调方法,可以有效地从超低采样数据中恢复干扰信息。这种方法在 "时间 "方向上对二维重建信号的相位进行解调。这样,就避免了欠采样造成的 "距离 "方向频谱混叠的影响。使用这种方法解调相位时,欠采样率不受检测信号频谱混叠效应的限制。因此,可以在超低采样率下获取准确的相位信息,从而大大减少了异频相干Φ-OTDR 中的相位解调数据。在实验中,在传统欠采样解调方法的限制范围内选择了三种采样率(100 MSa/s、10 MSa/s、1 MSa/s)来获取数据,所提出的方法也能准确地解调出相位信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phase Demodulation under Ultra-low sampling rate in heterodyne coherent Φ-OTDR
Heterodyne coherent phase-sensitive optical time-domain reflectometry(Φ-OTDR) requires a higher data sampling rate to demodulate phase in the “distance” direction effectively. Aiming at the problem of large amount of demodulated data, we propose a phase demodulation method that can effectively recover disturbance information from ultra-low sampling data. This method demodulates the phase of the two-dimensional reconstructed signal in the “time” direction. Thus, the influence of spectrum aliasing in the “distance” direction caused by undersampling is avoided. The undersampling rate is not limited by the spectrum aliasing effect of the detected signal when using this method to demodulate phase. Therefore, accurate phase information can be retrieved under ultra-low sampling rates, significantly reducing the data for phase demodulation in heterodyne coherent Φ-OTDR. In the experiment, three sampling rates (100 MSa/s, 10 MSa/s, 1 MSa/s) within the restricted area of the traditional undersampling demodulation method were selected to acquire data, and the proposed method can also accurately demodulate phase information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
12.10%
发文量
400
审稿时长
67 days
期刊介绍: The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region. Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine. Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.
期刊最新文献
Influence of GeO2/TeO2 ratio on thermal, structure and spectroscopic properties of Dy3+-doped tellurite-germanate glass 2.6 GW, mJ-class high-energy femtosecond laser system based on Yb:YAG single-crystal fiber amplifier Blind infrared spectral deconvolution with discrete Radon transform regularization for biomedical applications Multipulse bunches in the Yb-doped mode-locked fiber laser based on NLMMI-NPR hybrid mode locked mechanism Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1