L. Bottura , C. Accettura , A. Kolehmainen , J. Lorenzo Gomez , A. Portone , P. Testoni
{"title":"设计和分析用于 µ 子对撞机目标和捕获电磁铁的 HTS 内部冷却电缆","authors":"L. Bottura , C. Accettura , A. Kolehmainen , J. Lorenzo Gomez , A. Portone , P. Testoni","doi":"10.1016/j.cryogenics.2024.103972","DOIUrl":null,"url":null,"abstract":"<div><div>The Muon Collider is one of the options considered as the next step in High Energy Physics. It bears many challenges, last not least in superconducting magnet technology. The target and capture solenoid is one of them, a channel of approximately 18 m length consisting of co-axial solenoid magnets with a 1.2 m free bore and peak field on axis of 20 T. One of the main concerns come from the nuclear radiation environment that may influence the stable operation of the coil, as well as its material integrity. Energetic photons cause large radiation heat load, of the order of several kW in the cold mass, and deposit a considerable dose, several tens of MGy. Neutrons cause material damage, at the level of 10<sup>-3</sup> DPA. These values are at the present limit of superconducting coil technology. We describe here the conceptual design of the target and capture solenoid, focusing on the HTS cable design, which is largely inspired by the VIPER concept developed at MIT. We show how to address margin and protection, cooling and mechanics specific to the HTS cable selected.</div></div>","PeriodicalId":10812,"journal":{"name":"Cryogenics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and analysis of a HTS internally cooled cable for the Muon Collider target and capture solenoid magnets\",\"authors\":\"L. Bottura , C. Accettura , A. Kolehmainen , J. Lorenzo Gomez , A. Portone , P. Testoni\",\"doi\":\"10.1016/j.cryogenics.2024.103972\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Muon Collider is one of the options considered as the next step in High Energy Physics. It bears many challenges, last not least in superconducting magnet technology. The target and capture solenoid is one of them, a channel of approximately 18 m length consisting of co-axial solenoid magnets with a 1.2 m free bore and peak field on axis of 20 T. One of the main concerns come from the nuclear radiation environment that may influence the stable operation of the coil, as well as its material integrity. Energetic photons cause large radiation heat load, of the order of several kW in the cold mass, and deposit a considerable dose, several tens of MGy. Neutrons cause material damage, at the level of 10<sup>-3</sup> DPA. These values are at the present limit of superconducting coil technology. We describe here the conceptual design of the target and capture solenoid, focusing on the HTS cable design, which is largely inspired by the VIPER concept developed at MIT. We show how to address margin and protection, cooling and mechanics specific to the HTS cable selected.</div></div>\",\"PeriodicalId\":10812,\"journal\":{\"name\":\"Cryogenics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cryogenics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0011227524001929\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryogenics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0011227524001929","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Design and analysis of a HTS internally cooled cable for the Muon Collider target and capture solenoid magnets
The Muon Collider is one of the options considered as the next step in High Energy Physics. It bears many challenges, last not least in superconducting magnet technology. The target and capture solenoid is one of them, a channel of approximately 18 m length consisting of co-axial solenoid magnets with a 1.2 m free bore and peak field on axis of 20 T. One of the main concerns come from the nuclear radiation environment that may influence the stable operation of the coil, as well as its material integrity. Energetic photons cause large radiation heat load, of the order of several kW in the cold mass, and deposit a considerable dose, several tens of MGy. Neutrons cause material damage, at the level of 10-3 DPA. These values are at the present limit of superconducting coil technology. We describe here the conceptual design of the target and capture solenoid, focusing on the HTS cable design, which is largely inspired by the VIPER concept developed at MIT. We show how to address margin and protection, cooling and mechanics specific to the HTS cable selected.
期刊介绍:
Cryogenics is the world''s leading journal focusing on all aspects of cryoengineering and cryogenics. Papers published in Cryogenics cover a wide variety of subjects in low temperature engineering and research. Among the areas covered are:
- Applications of superconductivity: magnets, electronics, devices
- Superconductors and their properties
- Properties of materials: metals, alloys, composites, polymers, insulations
- New applications of cryogenic technology to processes, devices, machinery
- Refrigeration and liquefaction technology
- Thermodynamics
- Fluid properties and fluid mechanics
- Heat transfer
- Thermometry and measurement science
- Cryogenics in medicine
- Cryoelectronics