Xuan Zou , Dianqing Li , Shun Wang , Shixiang Gu , Wei Wu
{"title":"恒定剪应力路径下根加固土壤的失稳和变形行为","authors":"Xuan Zou , Dianqing Li , Shun Wang , Shixiang Gu , Wei Wu","doi":"10.1016/j.enggeo.2024.107762","DOIUrl":null,"url":null,"abstract":"<div><div>Climate change is becoming a greater global challenge, leading to more frequent and intense extreme weather events, which in turn increase mountain hazards like shallow landslides and soil erosion. Ecological slope protection using vegetation has gained increasing attention to mitigate natural disasters in recent years. While numerous studies have demonstrated the contribution of root systems to soil reinforcement, the comprehensive impact of roots on soil mechanical response under rainfall scenarios remains elusive. This study investigates the instability and deformation behaviors of root-reinforced soil through constant shear drained (CSD) tests. The role of root characteristics, including biomass, diameter, and length, in modulating the shear strength, instability and deformation behaviors of soils is investigated. The results indicate that the shear strength and stability of root-reinforced soil, as well as the inhibition effect of root on contractive deformation after the initiation of instability, increasing with greater root biomass and length and smaller root diameter. Moreover, due to the potential weak interfaces, fine or stiff long roots appear to increase the likelihood of volumetric dilation in root-reinforced soil at the later stage of unstable deformation. However, this dilatancy can be effectively resisted by increasing root planting density to form the root network. Furthermore, our experiments suggest that herbaceous vegetation with finer and longer roots is more effective in mitigating static liquefaction of soils induced by rainfall infiltration. This study helps develop a predictive constitutive model for root-reinforced soils and supports future bioengineering slope design.</div></div>","PeriodicalId":11567,"journal":{"name":"Engineering Geology","volume":"343 ","pages":"Article 107762"},"PeriodicalIF":6.9000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instability and deformation behaviors of root-reinforced soil under constant shear stress path\",\"authors\":\"Xuan Zou , Dianqing Li , Shun Wang , Shixiang Gu , Wei Wu\",\"doi\":\"10.1016/j.enggeo.2024.107762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Climate change is becoming a greater global challenge, leading to more frequent and intense extreme weather events, which in turn increase mountain hazards like shallow landslides and soil erosion. Ecological slope protection using vegetation has gained increasing attention to mitigate natural disasters in recent years. While numerous studies have demonstrated the contribution of root systems to soil reinforcement, the comprehensive impact of roots on soil mechanical response under rainfall scenarios remains elusive. This study investigates the instability and deformation behaviors of root-reinforced soil through constant shear drained (CSD) tests. The role of root characteristics, including biomass, diameter, and length, in modulating the shear strength, instability and deformation behaviors of soils is investigated. The results indicate that the shear strength and stability of root-reinforced soil, as well as the inhibition effect of root on contractive deformation after the initiation of instability, increasing with greater root biomass and length and smaller root diameter. Moreover, due to the potential weak interfaces, fine or stiff long roots appear to increase the likelihood of volumetric dilation in root-reinforced soil at the later stage of unstable deformation. However, this dilatancy can be effectively resisted by increasing root planting density to form the root network. Furthermore, our experiments suggest that herbaceous vegetation with finer and longer roots is more effective in mitigating static liquefaction of soils induced by rainfall infiltration. This study helps develop a predictive constitutive model for root-reinforced soils and supports future bioengineering slope design.</div></div>\",\"PeriodicalId\":11567,\"journal\":{\"name\":\"Engineering Geology\",\"volume\":\"343 \",\"pages\":\"Article 107762\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013795224003624\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013795224003624","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Instability and deformation behaviors of root-reinforced soil under constant shear stress path
Climate change is becoming a greater global challenge, leading to more frequent and intense extreme weather events, which in turn increase mountain hazards like shallow landslides and soil erosion. Ecological slope protection using vegetation has gained increasing attention to mitigate natural disasters in recent years. While numerous studies have demonstrated the contribution of root systems to soil reinforcement, the comprehensive impact of roots on soil mechanical response under rainfall scenarios remains elusive. This study investigates the instability and deformation behaviors of root-reinforced soil through constant shear drained (CSD) tests. The role of root characteristics, including biomass, diameter, and length, in modulating the shear strength, instability and deformation behaviors of soils is investigated. The results indicate that the shear strength and stability of root-reinforced soil, as well as the inhibition effect of root on contractive deformation after the initiation of instability, increasing with greater root biomass and length and smaller root diameter. Moreover, due to the potential weak interfaces, fine or stiff long roots appear to increase the likelihood of volumetric dilation in root-reinforced soil at the later stage of unstable deformation. However, this dilatancy can be effectively resisted by increasing root planting density to form the root network. Furthermore, our experiments suggest that herbaceous vegetation with finer and longer roots is more effective in mitigating static liquefaction of soils induced by rainfall infiltration. This study helps develop a predictive constitutive model for root-reinforced soils and supports future bioengineering slope design.
期刊介绍:
Engineering Geology, an international interdisciplinary journal, serves as a bridge between earth sciences and engineering, focusing on geological and geotechnical engineering. It welcomes studies with relevance to engineering, environmental concerns, and safety, catering to engineering geologists with backgrounds in geology or civil/mining engineering. Topics include applied geomorphology, structural geology, geophysics, geochemistry, environmental geology, hydrogeology, land use planning, natural hazards, remote sensing, soil and rock mechanics, and applied geotechnical engineering. The journal provides a platform for research at the intersection of geology and engineering disciplines.