{"title":"通过调整单一石墨烯材料实现超材料宽带吸收器,适用于各种太赫兹领域应用","authors":"Nagandla Prasad , Boddapati Taraka Phani Madhav , Neelaveni Ammal Murugan , Sudipta Das , Torki Altameem , Walid El-Shafai","doi":"10.1016/j.diamond.2024.111705","DOIUrl":null,"url":null,"abstract":"<div><div>A broadband metamaterial-based absorber (MTMA) with a broad absorptance response is proposed in this research article, which contains a straightforward structure with three layers namely lossy silicon functioning as a dielectric medium, copper as a bottom conductive layer, and finally graphene-based top layer as a radiating patch. The geometry of the MTMA consists of an octagon-shaped patch surrounded by a rectangular strip-connected square-type ring. The lossy silicon is the dielectric material, with a thickness (d) of 4 μm. The ground (bottom) conductive layer is of copper having 0.1 μm thickness (tg) and a conductivity (σ) of 5.9 × 10<sup>7</sup> s/m. At a temperature of 300° Kelvin, graphene material with a thickness of 1 nm is used for the proposed absorber. Moreover, it possesses a polarization-insensitive (PIS) nature. A broad spectrum with >90 % absorptance is obtained by fixing the graphene material's chemical potential to 0.7 eV (eV) and the relaxation time to 0.1 ps. The design of MTMA possesses straightforward construction without having multiple dielectric or conductive layers. It provides an excellent absorptance near unity (99 %) over the operating frequency range with a compact size of 2.5 × 2.5 × 4 μm<sup>3</sup>. It achieves an absorptance bandwidth of 3.26 THz within the terahertz domain covering a broad spectrum from 8.20 to 11.46 THz. The structure produces the same absorptance bandwidth irrespective of changes in polarization angle. Additionally, the proposed configuration is validated using an equivalent electrical circuit (ECC) model with the help of the ADS tool. The exclusive behavior of the propounded absorber in the terahertz band points to possible applications in various terahertz-based devices for spectroscopy, energy harvesting, high-speed wireless communications, food processing, detection, imaging, and sensing, etc.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"150 ","pages":"Article 111705"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A metamaterial broadband absorber by tuning single graphene material for various terahertz domain applications\",\"authors\":\"Nagandla Prasad , Boddapati Taraka Phani Madhav , Neelaveni Ammal Murugan , Sudipta Das , Torki Altameem , Walid El-Shafai\",\"doi\":\"10.1016/j.diamond.2024.111705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A broadband metamaterial-based absorber (MTMA) with a broad absorptance response is proposed in this research article, which contains a straightforward structure with three layers namely lossy silicon functioning as a dielectric medium, copper as a bottom conductive layer, and finally graphene-based top layer as a radiating patch. The geometry of the MTMA consists of an octagon-shaped patch surrounded by a rectangular strip-connected square-type ring. The lossy silicon is the dielectric material, with a thickness (d) of 4 μm. The ground (bottom) conductive layer is of copper having 0.1 μm thickness (tg) and a conductivity (σ) of 5.9 × 10<sup>7</sup> s/m. At a temperature of 300° Kelvin, graphene material with a thickness of 1 nm is used for the proposed absorber. Moreover, it possesses a polarization-insensitive (PIS) nature. A broad spectrum with >90 % absorptance is obtained by fixing the graphene material's chemical potential to 0.7 eV (eV) and the relaxation time to 0.1 ps. The design of MTMA possesses straightforward construction without having multiple dielectric or conductive layers. It provides an excellent absorptance near unity (99 %) over the operating frequency range with a compact size of 2.5 × 2.5 × 4 μm<sup>3</sup>. It achieves an absorptance bandwidth of 3.26 THz within the terahertz domain covering a broad spectrum from 8.20 to 11.46 THz. The structure produces the same absorptance bandwidth irrespective of changes in polarization angle. Additionally, the proposed configuration is validated using an equivalent electrical circuit (ECC) model with the help of the ADS tool. The exclusive behavior of the propounded absorber in the terahertz band points to possible applications in various terahertz-based devices for spectroscopy, energy harvesting, high-speed wireless communications, food processing, detection, imaging, and sensing, etc.</div></div>\",\"PeriodicalId\":11266,\"journal\":{\"name\":\"Diamond and Related Materials\",\"volume\":\"150 \",\"pages\":\"Article 111705\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diamond and Related Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S092596352400918X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092596352400918X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
A metamaterial broadband absorber by tuning single graphene material for various terahertz domain applications
A broadband metamaterial-based absorber (MTMA) with a broad absorptance response is proposed in this research article, which contains a straightforward structure with three layers namely lossy silicon functioning as a dielectric medium, copper as a bottom conductive layer, and finally graphene-based top layer as a radiating patch. The geometry of the MTMA consists of an octagon-shaped patch surrounded by a rectangular strip-connected square-type ring. The lossy silicon is the dielectric material, with a thickness (d) of 4 μm. The ground (bottom) conductive layer is of copper having 0.1 μm thickness (tg) and a conductivity (σ) of 5.9 × 107 s/m. At a temperature of 300° Kelvin, graphene material with a thickness of 1 nm is used for the proposed absorber. Moreover, it possesses a polarization-insensitive (PIS) nature. A broad spectrum with >90 % absorptance is obtained by fixing the graphene material's chemical potential to 0.7 eV (eV) and the relaxation time to 0.1 ps. The design of MTMA possesses straightforward construction without having multiple dielectric or conductive layers. It provides an excellent absorptance near unity (99 %) over the operating frequency range with a compact size of 2.5 × 2.5 × 4 μm3. It achieves an absorptance bandwidth of 3.26 THz within the terahertz domain covering a broad spectrum from 8.20 to 11.46 THz. The structure produces the same absorptance bandwidth irrespective of changes in polarization angle. Additionally, the proposed configuration is validated using an equivalent electrical circuit (ECC) model with the help of the ADS tool. The exclusive behavior of the propounded absorber in the terahertz band points to possible applications in various terahertz-based devices for spectroscopy, energy harvesting, high-speed wireless communications, food processing, detection, imaging, and sensing, etc.
期刊介绍:
DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices.
The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.