无定形二氧化硅粉末早期烧结阶段的深度表征

IF 5.8 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Journal of The European Ceramic Society Pub Date : 2024-10-28 DOI:10.1016/j.jeurceramsoc.2024.117031
Aya Benjira , Guy Antou , Damien André , Denis Rochais , Thierry Piquero , Yohann Scaringella-Guerritat , Alexandre Maître
{"title":"无定形二氧化硅粉末早期烧结阶段的深度表征","authors":"Aya Benjira ,&nbsp;Guy Antou ,&nbsp;Damien André ,&nbsp;Denis Rochais ,&nbsp;Thierry Piquero ,&nbsp;Yohann Scaringella-Guerritat ,&nbsp;Alexandre Maître","doi":"10.1016/j.jeurceramsoc.2024.117031","DOIUrl":null,"url":null,"abstract":"<div><div>The consolidation and densification mechanisms occurring in the early sintering stages within a pure silica-based glassy material have been thoroughly investigated. Dilatometry curves were studied through several analytical approaches. In isothermal conditions at 1200°C, the identified <em>m</em> exponent value (correlating relative shrinkage to dwell time) is equal to 1.02 ± 0.08, which agrees with the analytical model of Coble for viscous flow sintering. Apparent activation energy and viscosity for sintering process were determined by applying the constant heating rate method and cyclic loading dilatometry respectively. The measured evolutions of specific surface area and relative density at the macroscale were correlated to microstructural features (<em>i.e.</em> pore size and interparticle neck radius). As shown, the silica material undergoes first a consolidation stage without significant shrinkage, before the occurrence of densification through particles coalescence. The shrinkage-neck growth trajectory characteristic of viscous flow sintering was established for this real glassy material, and compared to predictions of numerical models at the meso-scale from the literature.</div></div>","PeriodicalId":17408,"journal":{"name":"Journal of The European Ceramic Society","volume":"45 3","pages":"Article 117031"},"PeriodicalIF":5.8000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-depth characterization of the early sintering stages of an amorphous silica powder\",\"authors\":\"Aya Benjira ,&nbsp;Guy Antou ,&nbsp;Damien André ,&nbsp;Denis Rochais ,&nbsp;Thierry Piquero ,&nbsp;Yohann Scaringella-Guerritat ,&nbsp;Alexandre Maître\",\"doi\":\"10.1016/j.jeurceramsoc.2024.117031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The consolidation and densification mechanisms occurring in the early sintering stages within a pure silica-based glassy material have been thoroughly investigated. Dilatometry curves were studied through several analytical approaches. In isothermal conditions at 1200°C, the identified <em>m</em> exponent value (correlating relative shrinkage to dwell time) is equal to 1.02 ± 0.08, which agrees with the analytical model of Coble for viscous flow sintering. Apparent activation energy and viscosity for sintering process were determined by applying the constant heating rate method and cyclic loading dilatometry respectively. The measured evolutions of specific surface area and relative density at the macroscale were correlated to microstructural features (<em>i.e.</em> pore size and interparticle neck radius). As shown, the silica material undergoes first a consolidation stage without significant shrinkage, before the occurrence of densification through particles coalescence. The shrinkage-neck growth trajectory characteristic of viscous flow sintering was established for this real glassy material, and compared to predictions of numerical models at the meso-scale from the literature.</div></div>\",\"PeriodicalId\":17408,\"journal\":{\"name\":\"Journal of The European Ceramic Society\",\"volume\":\"45 3\",\"pages\":\"Article 117031\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The European Ceramic Society\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S095522192400904X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The European Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S095522192400904X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们对纯硅基玻璃材料烧结初期的固结和致密化机制进行了深入研究。通过几种分析方法对稀释曲线进行了研究。在 1200°C 等温条件下,确定的 m 指数值(相对收缩率与停留时间的相关性)等于 1.02 ± 0.08,这与 Coble 的粘性流动烧结分析模型一致。烧结过程的表观活化能和粘度分别是通过恒定加热速率法和循环加载扩张仪测定的。测量到的比表面积和相对密度在宏观尺度上的变化与微观结构特征(即孔径和颗粒间颈半径)相关联。如图所示,二氧化硅材料首先经历了没有明显收缩的固结阶段,然后通过颗粒凝聚发生致密化。为这种真实的玻璃质材料确定了粘性流动烧结的收缩-颈部生长轨迹,并与文献中介观尺度的数值模型预测进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-depth characterization of the early sintering stages of an amorphous silica powder
The consolidation and densification mechanisms occurring in the early sintering stages within a pure silica-based glassy material have been thoroughly investigated. Dilatometry curves were studied through several analytical approaches. In isothermal conditions at 1200°C, the identified m exponent value (correlating relative shrinkage to dwell time) is equal to 1.02 ± 0.08, which agrees with the analytical model of Coble for viscous flow sintering. Apparent activation energy and viscosity for sintering process were determined by applying the constant heating rate method and cyclic loading dilatometry respectively. The measured evolutions of specific surface area and relative density at the macroscale were correlated to microstructural features (i.e. pore size and interparticle neck radius). As shown, the silica material undergoes first a consolidation stage without significant shrinkage, before the occurrence of densification through particles coalescence. The shrinkage-neck growth trajectory characteristic of viscous flow sintering was established for this real glassy material, and compared to predictions of numerical models at the meso-scale from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The European Ceramic Society
Journal of The European Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
10.70
自引率
12.30%
发文量
863
审稿时长
35 days
期刊介绍: The Journal of the European Ceramic Society publishes the results of original research and reviews relating to ceramic materials. Papers of either an experimental or theoretical character will be welcomed on a fully international basis. The emphasis is on novel generic science concerning the relationships between processing, microstructure and properties of polycrystalline ceramics consolidated at high temperature. Papers may relate to any of the conventional categories of ceramic: structural, functional, traditional or composite. The central objective is to sustain a high standard of research quality by means of appropriate reviewing procedures.
期刊最新文献
Amorphous SiOC-coated submicron mullite aerogels with excellent thermal and structural stability up to 1500 ℃ Oxidation behavior of (Hf0.2Zr0.2Ta0.2Ti0.2Me0.2)B2 (Me=Nb,Cr) high-entropy ceramics at 1200 °C in air Properties of multiple rare earth oxides co-stabilized YDyGdSmNd-TZP ceramics HfB2-SiC ceramics fabricated by reactive melt infiltration and its long-term oxidation behavior at 1650°C Optimized electrostrain with minimal hysteresis at the MPB in BNT-based ceramics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1