小干纪以来马克兰大陆边缘化学风化和沉积物来源的演变过程

IF 2.6 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Marine Geology Pub Date : 2024-10-24 DOI:10.1016/j.margeo.2024.107416
Chunhui Xiao , Yonghong Wang , Jian Lin , Kaiwei Wang
{"title":"小干纪以来马克兰大陆边缘化学风化和沉积物来源的演变过程","authors":"Chunhui Xiao ,&nbsp;Yonghong Wang ,&nbsp;Jian Lin ,&nbsp;Kaiwei Wang","doi":"10.1016/j.margeo.2024.107416","DOIUrl":null,"url":null,"abstract":"<div><div>The chemical weathering processes and sedimentary source evolution since the Younger Dryas (YD) in the low-latitude arid continental margin have been investigated. Two sediment cores, MK07G and MK09G, were retrieved from the Makran continental margin in the northern Arabian Sea and subjected to analyses of major and trace elements, along with AMS<sup>14</sup>C dating. The results show that since the YD, the weathered parent rocks of Makran sediments have remained relatively stable, predominantly consisting of felsic rocks, with some contributions from mafic rocks. The Makran sediments exhibit initial to moderate weathering, with no discernible effects from grain size sorting or disturbances from sediment recycling, indicating primary deposition. Significant contributions of terrigenous eolian dust from surrounding continents (e.g., the Indian subcontinent, Arabian Peninsula, and northeastern Africa) were identified, along with riverine inputs from the Dasht River and fine-grained components from the Late Pleistocene Indus delta sediment, as well as proximal basin sedimentation. The evolution of sediment sources in the study area is significantly influenced by the Indian Monsoon and westerly wind systems, with intensified monsoon phases and westerly conditions correlating with increased fluvial input. Furthermore, chemical weathering processes since the YD are closely linked to local precipitation patterns, where intensified rainfall enhances weathering intensity. Records from the Makran continental margin indicate a teleconnection between chemical weathering and sedimentary processes in the Arabian Sea and Bond events in the North Atlantic, highlighting the extensive influence of Northern Hemisphere climate fluctuations.</div></div>","PeriodicalId":18229,"journal":{"name":"Marine Geology","volume":"478 ","pages":"Article 107416"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution process of chemical weathering and sediment sources in the Makran Continental margin since the Younger Dryas\",\"authors\":\"Chunhui Xiao ,&nbsp;Yonghong Wang ,&nbsp;Jian Lin ,&nbsp;Kaiwei Wang\",\"doi\":\"10.1016/j.margeo.2024.107416\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The chemical weathering processes and sedimentary source evolution since the Younger Dryas (YD) in the low-latitude arid continental margin have been investigated. Two sediment cores, MK07G and MK09G, were retrieved from the Makran continental margin in the northern Arabian Sea and subjected to analyses of major and trace elements, along with AMS<sup>14</sup>C dating. The results show that since the YD, the weathered parent rocks of Makran sediments have remained relatively stable, predominantly consisting of felsic rocks, with some contributions from mafic rocks. The Makran sediments exhibit initial to moderate weathering, with no discernible effects from grain size sorting or disturbances from sediment recycling, indicating primary deposition. Significant contributions of terrigenous eolian dust from surrounding continents (e.g., the Indian subcontinent, Arabian Peninsula, and northeastern Africa) were identified, along with riverine inputs from the Dasht River and fine-grained components from the Late Pleistocene Indus delta sediment, as well as proximal basin sedimentation. The evolution of sediment sources in the study area is significantly influenced by the Indian Monsoon and westerly wind systems, with intensified monsoon phases and westerly conditions correlating with increased fluvial input. Furthermore, chemical weathering processes since the YD are closely linked to local precipitation patterns, where intensified rainfall enhances weathering intensity. Records from the Makran continental margin indicate a teleconnection between chemical weathering and sedimentary processes in the Arabian Sea and Bond events in the North Atlantic, highlighting the extensive influence of Northern Hemisphere climate fluctuations.</div></div>\",\"PeriodicalId\":18229,\"journal\":{\"name\":\"Marine Geology\",\"volume\":\"478 \",\"pages\":\"Article 107416\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0025322724002007\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geology","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025322724002007","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了低纬度干旱大陆边缘自年轻干期(YD)以来的化学风化过程和沉积源演变。从阿拉伯海北部的马克兰大陆边缘取回了两个沉积岩芯 MK07G 和 MK09G,并对其进行了主要元素和痕量元素分析以及 AMS14C 测定。结果表明,自 YD 以来,马克兰沉积物的风化母岩一直保持相对稳定,主要由长英岩组成,部分来自黑云母岩。马克兰沉积物表现出初步至中等程度的风化,没有明显的粒度分选或沉积物循环扰动的影响,表明是原生沉积。研究发现,来自周边大陆(如印度次大陆、阿拉伯半岛和非洲东北部)的陆地风积尘以及来自达什特河的河流输入和来自晚更新世印度河三角洲沉积物的细粒成分以及近端盆地沉积作用对该地区的沉积物产生了重要影响。研究区域沉积物来源的演变受到印度季风和西风系统的显著影响,季风阶段和西风条件的加强与河流输入的增加相关联。此外,自 YD 以来的化学风化过程与当地的降水模式密切相关,降雨增强会提高风化强度。来自马克兰大陆边缘的记录表明,阿拉伯海的化学风化和沉积过程与北大西洋的邦德事件之间存在着远距离联系,凸显了北半球气候波动的广泛影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution process of chemical weathering and sediment sources in the Makran Continental margin since the Younger Dryas
The chemical weathering processes and sedimentary source evolution since the Younger Dryas (YD) in the low-latitude arid continental margin have been investigated. Two sediment cores, MK07G and MK09G, were retrieved from the Makran continental margin in the northern Arabian Sea and subjected to analyses of major and trace elements, along with AMS14C dating. The results show that since the YD, the weathered parent rocks of Makran sediments have remained relatively stable, predominantly consisting of felsic rocks, with some contributions from mafic rocks. The Makran sediments exhibit initial to moderate weathering, with no discernible effects from grain size sorting or disturbances from sediment recycling, indicating primary deposition. Significant contributions of terrigenous eolian dust from surrounding continents (e.g., the Indian subcontinent, Arabian Peninsula, and northeastern Africa) were identified, along with riverine inputs from the Dasht River and fine-grained components from the Late Pleistocene Indus delta sediment, as well as proximal basin sedimentation. The evolution of sediment sources in the study area is significantly influenced by the Indian Monsoon and westerly wind systems, with intensified monsoon phases and westerly conditions correlating with increased fluvial input. Furthermore, chemical weathering processes since the YD are closely linked to local precipitation patterns, where intensified rainfall enhances weathering intensity. Records from the Makran continental margin indicate a teleconnection between chemical weathering and sedimentary processes in the Arabian Sea and Bond events in the North Atlantic, highlighting the extensive influence of Northern Hemisphere climate fluctuations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Marine Geology
Marine Geology 地学-地球科学综合
CiteScore
6.10
自引率
6.90%
发文量
175
审稿时长
21.9 weeks
期刊介绍: Marine Geology is the premier international journal on marine geological processes in the broadest sense. We seek papers that are comprehensive, interdisciplinary and synthetic that will be lasting contributions to the field. Although most papers are based on regional studies, they must demonstrate new findings of international significance. We accept papers on subjects as diverse as seafloor hydrothermal systems, beach dynamics, early diagenesis, microbiological studies in sediments, palaeoclimate studies and geophysical studies of the seabed. We encourage papers that address emerging new fields, for example the influence of anthropogenic processes on coastal/marine geology and coastal/marine geoarchaeology. We insist that the papers are concerned with the marine realm and that they deal with geology: with rocks, sediments, and physical and chemical processes affecting them. Papers should address scientific hypotheses: highly descriptive data compilations or papers that deal only with marine management and risk assessment should be submitted to other journals. Papers on laboratory or modelling studies must demonstrate direct relevance to marine processes or deposits. The primary criteria for acceptance of papers is that the science is of high quality, novel, significant, and of broad international interest.
期刊最新文献
Editorial Board Channel function shift around a recently-colonised estuarine mangrove shoal The eastward intrusion of the Lena River into the East Siberian Sea since the early Holocene Reduced bottom water oxygenation in the northern Indian Ocean during the Last Glacial Maximum Origin and critical metals enrichment of ferromanganese precipitates from Jiawang Seamount (Hook Ridge) Antarctica: Geochemistry and isotope evidence
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1