Eduardo Gutierrez-Prieto , Michael Gomez , Pedro M. Reis
{"title":"利用离心力和欧拉力实现旋转弹性体的可调屈曲","authors":"Eduardo Gutierrez-Prieto , Michael Gomez , Pedro M. Reis","doi":"10.1016/j.eml.2024.102246","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the geometrically nonlinear deformation and buckling of a slender elastic beam subject to time-dependent ‘fictitious’ (non-inertial) forces arising from unsteady rotation. Using a rotary apparatus that accurately imposes an angular acceleration around a fixed axis, we demonstrate that dynamically coupled centrifugal and Euler forces can produce tunable structural deformations. Specifically, by systematically varying the acceleration ramp in a highly automated experimental setup, we show how the buckling onset of a cantilevered beam can be precisely tuned and its deformation direction selected. In a second configuration, we demonstrate that Euler forces can cause a pre-arched beam to snap-through, on demand, between its two stable states. We also formulate a theoretical model rooted in Euler’s <em>elastica</em> that rationalizes the problem and provides predictions in excellent quantitative agreement with the experimental data. Our findings demonstrate an innovative approach to the programmable actuation of slender rotating structures, where complex loading fields can be produced by controlling a single input parameter, the angular position of a rotating system. The ability to predict and control the buckling behaviors under such non-trivial loading conditions opens avenues for designing devices based on rotational fictitious forces.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"72 ","pages":"Article 102246"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing centrifugal and Euler forces for tunable buckling of a rotating elastica\",\"authors\":\"Eduardo Gutierrez-Prieto , Michael Gomez , Pedro M. Reis\",\"doi\":\"10.1016/j.eml.2024.102246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the geometrically nonlinear deformation and buckling of a slender elastic beam subject to time-dependent ‘fictitious’ (non-inertial) forces arising from unsteady rotation. Using a rotary apparatus that accurately imposes an angular acceleration around a fixed axis, we demonstrate that dynamically coupled centrifugal and Euler forces can produce tunable structural deformations. Specifically, by systematically varying the acceleration ramp in a highly automated experimental setup, we show how the buckling onset of a cantilevered beam can be precisely tuned and its deformation direction selected. In a second configuration, we demonstrate that Euler forces can cause a pre-arched beam to snap-through, on demand, between its two stable states. We also formulate a theoretical model rooted in Euler’s <em>elastica</em> that rationalizes the problem and provides predictions in excellent quantitative agreement with the experimental data. Our findings demonstrate an innovative approach to the programmable actuation of slender rotating structures, where complex loading fields can be produced by controlling a single input parameter, the angular position of a rotating system. The ability to predict and control the buckling behaviors under such non-trivial loading conditions opens avenues for designing devices based on rotational fictitious forces.</div></div>\",\"PeriodicalId\":56247,\"journal\":{\"name\":\"Extreme Mechanics Letters\",\"volume\":\"72 \",\"pages\":\"Article 102246\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Extreme Mechanics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352431624001263\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352431624001263","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Harnessing centrifugal and Euler forces for tunable buckling of a rotating elastica
We investigate the geometrically nonlinear deformation and buckling of a slender elastic beam subject to time-dependent ‘fictitious’ (non-inertial) forces arising from unsteady rotation. Using a rotary apparatus that accurately imposes an angular acceleration around a fixed axis, we demonstrate that dynamically coupled centrifugal and Euler forces can produce tunable structural deformations. Specifically, by systematically varying the acceleration ramp in a highly automated experimental setup, we show how the buckling onset of a cantilevered beam can be precisely tuned and its deformation direction selected. In a second configuration, we demonstrate that Euler forces can cause a pre-arched beam to snap-through, on demand, between its two stable states. We also formulate a theoretical model rooted in Euler’s elastica that rationalizes the problem and provides predictions in excellent quantitative agreement with the experimental data. Our findings demonstrate an innovative approach to the programmable actuation of slender rotating structures, where complex loading fields can be produced by controlling a single input parameter, the angular position of a rotating system. The ability to predict and control the buckling behaviors under such non-trivial loading conditions opens avenues for designing devices based on rotational fictitious forces.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.