Pei Sun , Huayang Zhang , Liang Xing , Bin Zhong , Yangjun Ying , Huayun Shen
{"title":"NPTS-PK:用于快速计算三维伽马辐射场的新点核代码","authors":"Pei Sun , Huayang Zhang , Liang Xing , Bin Zhong , Yangjun Ying , Huayun Shen","doi":"10.1016/j.radphyschem.2024.112329","DOIUrl":null,"url":null,"abstract":"<div><div>The point kernel integration method is commonly utilized for the analytical calculation of gamma radiation fields in the field of radiation protection and shielding design. This study introduces NPTS-PK, a program developed for rapid calculation of 3D gamma radiation fields based on the NPTS program and the point kernel integration method. Based on the geometric construction and input method of the NPTS program, NPTS-PK supports point kernel calculations for radiation sources and shielding structures of various complex shapes and materials. By calculating material attenuation coefficients using continuous energy cross-section parameters, combined with a more precise buildup factor calculation method, the accuracy of calculation results has been enhanced. Improvements in ray tracing processes and the implementation of the probability neighbor list method have accelerated geometric processing. To address the challenge of excessive computation time associated with large-scale grid counting in point kernel programs, NPTS-PK integrates several efficient acceleration techniques, elevating the speed of radiation field calculation by an order of magnitude. Tests on typical model and engineering scenario demonstrate that the deviation between NPTS-PK results and the reference values is within a few tens of percent, and the computational efficiency and accuracy are improved compared to the standard point kernel programs.</div></div>","PeriodicalId":20861,"journal":{"name":"Radiation Physics and Chemistry","volume":"226 ","pages":"Article 112329"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NPTS-PK: A new point kernel code for fast calculation of 3D gamma radiation field\",\"authors\":\"Pei Sun , Huayang Zhang , Liang Xing , Bin Zhong , Yangjun Ying , Huayun Shen\",\"doi\":\"10.1016/j.radphyschem.2024.112329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The point kernel integration method is commonly utilized for the analytical calculation of gamma radiation fields in the field of radiation protection and shielding design. This study introduces NPTS-PK, a program developed for rapid calculation of 3D gamma radiation fields based on the NPTS program and the point kernel integration method. Based on the geometric construction and input method of the NPTS program, NPTS-PK supports point kernel calculations for radiation sources and shielding structures of various complex shapes and materials. By calculating material attenuation coefficients using continuous energy cross-section parameters, combined with a more precise buildup factor calculation method, the accuracy of calculation results has been enhanced. Improvements in ray tracing processes and the implementation of the probability neighbor list method have accelerated geometric processing. To address the challenge of excessive computation time associated with large-scale grid counting in point kernel programs, NPTS-PK integrates several efficient acceleration techniques, elevating the speed of radiation field calculation by an order of magnitude. Tests on typical model and engineering scenario demonstrate that the deviation between NPTS-PK results and the reference values is within a few tens of percent, and the computational efficiency and accuracy are improved compared to the standard point kernel programs.</div></div>\",\"PeriodicalId\":20861,\"journal\":{\"name\":\"Radiation Physics and Chemistry\",\"volume\":\"226 \",\"pages\":\"Article 112329\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiation Physics and Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0969806X24008211\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation Physics and Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969806X24008211","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
NPTS-PK: A new point kernel code for fast calculation of 3D gamma radiation field
The point kernel integration method is commonly utilized for the analytical calculation of gamma radiation fields in the field of radiation protection and shielding design. This study introduces NPTS-PK, a program developed for rapid calculation of 3D gamma radiation fields based on the NPTS program and the point kernel integration method. Based on the geometric construction and input method of the NPTS program, NPTS-PK supports point kernel calculations for radiation sources and shielding structures of various complex shapes and materials. By calculating material attenuation coefficients using continuous energy cross-section parameters, combined with a more precise buildup factor calculation method, the accuracy of calculation results has been enhanced. Improvements in ray tracing processes and the implementation of the probability neighbor list method have accelerated geometric processing. To address the challenge of excessive computation time associated with large-scale grid counting in point kernel programs, NPTS-PK integrates several efficient acceleration techniques, elevating the speed of radiation field calculation by an order of magnitude. Tests on typical model and engineering scenario demonstrate that the deviation between NPTS-PK results and the reference values is within a few tens of percent, and the computational efficiency and accuracy are improved compared to the standard point kernel programs.
期刊介绍:
Radiation Physics and Chemistry is a multidisciplinary journal that provides a medium for publication of substantial and original papers, reviews, and short communications which focus on research and developments involving ionizing radiation in radiation physics, radiation chemistry and radiation processing.
The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. This could include papers that are very similar to previous publications, only with changed target substrates, employed materials, analyzed sites and experimental methods, report results without presenting new insights and/or hypothesis testing, or do not focus on the radiation effects.