面向多代理控制的通信和控制感知最优量化器选择

IF 2.4 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-06-19 DOI:10.1109/LCSYS.2024.3416858
Mohammad Afshari;Dipankar Maity;Panagiotis Tsiotras
{"title":"面向多代理控制的通信和控制感知最优量化器选择","authors":"Mohammad Afshari;Dipankar Maity;Panagiotis Tsiotras","doi":"10.1109/LCSYS.2024.3416858","DOIUrl":null,"url":null,"abstract":"We consider a multi-agent linear quadratic optimal control problem. Due to communication constraints, the agents are required to quantize their local state measurements before communicating them to the rest of the team, thus resulting in a decentralized information structure. The optimal controllers are to be synthesized under this decentralized and quantized information structure. The agents are given a set of quantizers with varying quantization resolutions—higher resolution incurs higher communication cost and vice versa. The team must optimally select the quantizer to prioritize agents with ‘high-quality’ information for optimizing the control performance under communication constraints. We show that there exist a separation between the optimal solution to the control problem and the choice of the optimal quantizer. We show that the optimal controllers are linear and the optimal selection of the quantizers can be determined by solving a linear program.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Communication- and Control-Aware Optimal Quantizer Selection for Multi-Agent Control\",\"authors\":\"Mohammad Afshari;Dipankar Maity;Panagiotis Tsiotras\",\"doi\":\"10.1109/LCSYS.2024.3416858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a multi-agent linear quadratic optimal control problem. Due to communication constraints, the agents are required to quantize their local state measurements before communicating them to the rest of the team, thus resulting in a decentralized information structure. The optimal controllers are to be synthesized under this decentralized and quantized information structure. The agents are given a set of quantizers with varying quantization resolutions—higher resolution incurs higher communication cost and vice versa. The team must optimally select the quantizer to prioritize agents with ‘high-quality’ information for optimizing the control performance under communication constraints. We show that there exist a separation between the optimal solution to the control problem and the choice of the optimal quantizer. We show that the optimal controllers are linear and the optimal selection of the quantizers can be determined by solving a linear program.\",\"PeriodicalId\":37235,\"journal\":{\"name\":\"IEEE Control Systems Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Control Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10563984/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10563984/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是一个多代理线性二次优化控制问题。由于通信限制,各代理在将其本地状态测量信息传递给团队其他成员之前,必须对其进行量化,从而形成一种分散的信息结构。最优控制器就是在这种分散和量化的信息结构下合成的。代理将获得一组量化分辨率各不相同的量化器--分辨率越高,通信成本越高,反之亦然。在通信限制条件下,团队必须优化选择量化器,优先考虑拥有 "高质量 "信息的代理,以优化控制性能。我们证明,控制问题的最优解与最优量化器的选择之间存在分离。我们证明,最优控制器是线性的,而量化器的最优选择可以通过求解线性程序来确定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Communication- and Control-Aware Optimal Quantizer Selection for Multi-Agent Control
We consider a multi-agent linear quadratic optimal control problem. Due to communication constraints, the agents are required to quantize their local state measurements before communicating them to the rest of the team, thus resulting in a decentralized information structure. The optimal controllers are to be synthesized under this decentralized and quantized information structure. The agents are given a set of quantizers with varying quantization resolutions—higher resolution incurs higher communication cost and vice versa. The team must optimally select the quantizer to prioritize agents with ‘high-quality’ information for optimizing the control performance under communication constraints. We show that there exist a separation between the optimal solution to the control problem and the choice of the optimal quantizer. We show that the optimal controllers are linear and the optimal selection of the quantizers can be determined by solving a linear program.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Rationality of Learning Algorithms in Repeated Normal-Form Games Impact of Opinion on Disease Transmission With Waterborne Pathogen and Stubborn Community Numerical and Lyapunov-Based Investigation of the Effect of Stenosis on Blood Transport Stability Using a Control-Theoretic PDE Model of Cardiovascular Flow Almost Sure Convergence and Non-Asymptotic Concentration Bounds for Stochastic Mirror Descent Algorithm Opinion Dynamics With Set-Based Confidence: Convergence Criteria and Periodic Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1