{"title":"用于具有超高灵敏度的闭环可回收温度传感器的可逆交联无液离子导电弹性体","authors":"Xu Fang, Nengan Tian, Xin Gao, Hao Wang, Ronghua Wang, Tianqi Li, Yixuan Li, Junqi Sun","doi":"10.31635/ccschem.024.202404819","DOIUrl":null,"url":null,"abstract":"<p>The fabrication of liquid-free ionic conductive elastomers (ICEs) that can function as flexible temperature sensors with high sensitivity, fast response time, and efficient recyclability is a great challenge. In this study, novel liquid-free ICEs are conveniently fabricated through the complexation of 4-carboxybenzaldehyde-grafted poly(vinyl alcohol) (CPVA) with well-designed solid quaternary ammonium (QA) molecules bearing bifunctional hydrogen-bonding moieties. The resulting CPVA-QA elastomers, which are highly elastic and adhesive to diverse surfaces, exhibit a tensile strength of 6.6 MPa, a toughness of 14.7 MJ m<sup>−3</sup>, and a Young’s modulus of 0.15 MPa. These elastomers have a hydrogen-bonded network structure where the bifunctional QA molecules significantly suppress polymer chain entanglements. Benefitting from the thermally sensitive hydrogen bonds and the substantially reduced chain entanglements, the CPVA-QA elastomers show a high chain mobility upon temperature elevation, which facilitates ion transport within the CPVA-QA elastomers. Consequently, the CPVA-QA elastomer-based temperature sensors show an outstanding temperature resolution (0.05 °C), a fast response time over a wide temperature range, and a record-high thermosensitivity of 10.8% K<sup>−1</sup>. Importantly, the CPVA-QA sensors can be depolymerized under mild conditions to recover their original components in high purity and yields (>96%), enabling closed-loop recycling of the sensors.</p>","PeriodicalId":9810,"journal":{"name":"CCS Chemistry","volume":"126 1","pages":""},"PeriodicalIF":9.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reversibly Cross-Linked Liquid-Free Ionic Conductive Elastomers for Closed-Loop Recyclable Temperature Sensors with Ultrahigh Sensitivity\",\"authors\":\"Xu Fang, Nengan Tian, Xin Gao, Hao Wang, Ronghua Wang, Tianqi Li, Yixuan Li, Junqi Sun\",\"doi\":\"10.31635/ccschem.024.202404819\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fabrication of liquid-free ionic conductive elastomers (ICEs) that can function as flexible temperature sensors with high sensitivity, fast response time, and efficient recyclability is a great challenge. In this study, novel liquid-free ICEs are conveniently fabricated through the complexation of 4-carboxybenzaldehyde-grafted poly(vinyl alcohol) (CPVA) with well-designed solid quaternary ammonium (QA) molecules bearing bifunctional hydrogen-bonding moieties. The resulting CPVA-QA elastomers, which are highly elastic and adhesive to diverse surfaces, exhibit a tensile strength of 6.6 MPa, a toughness of 14.7 MJ m<sup>−3</sup>, and a Young’s modulus of 0.15 MPa. These elastomers have a hydrogen-bonded network structure where the bifunctional QA molecules significantly suppress polymer chain entanglements. Benefitting from the thermally sensitive hydrogen bonds and the substantially reduced chain entanglements, the CPVA-QA elastomers show a high chain mobility upon temperature elevation, which facilitates ion transport within the CPVA-QA elastomers. Consequently, the CPVA-QA elastomer-based temperature sensors show an outstanding temperature resolution (0.05 °C), a fast response time over a wide temperature range, and a record-high thermosensitivity of 10.8% K<sup>−1</sup>. Importantly, the CPVA-QA sensors can be depolymerized under mild conditions to recover their original components in high purity and yields (>96%), enabling closed-loop recycling of the sensors.</p>\",\"PeriodicalId\":9810,\"journal\":{\"name\":\"CCS Chemistry\",\"volume\":\"126 1\",\"pages\":\"\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CCS Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31635/ccschem.024.202404819\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CCS Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31635/ccschem.024.202404819","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Reversibly Cross-Linked Liquid-Free Ionic Conductive Elastomers for Closed-Loop Recyclable Temperature Sensors with Ultrahigh Sensitivity
The fabrication of liquid-free ionic conductive elastomers (ICEs) that can function as flexible temperature sensors with high sensitivity, fast response time, and efficient recyclability is a great challenge. In this study, novel liquid-free ICEs are conveniently fabricated through the complexation of 4-carboxybenzaldehyde-grafted poly(vinyl alcohol) (CPVA) with well-designed solid quaternary ammonium (QA) molecules bearing bifunctional hydrogen-bonding moieties. The resulting CPVA-QA elastomers, which are highly elastic and adhesive to diverse surfaces, exhibit a tensile strength of 6.6 MPa, a toughness of 14.7 MJ m−3, and a Young’s modulus of 0.15 MPa. These elastomers have a hydrogen-bonded network structure where the bifunctional QA molecules significantly suppress polymer chain entanglements. Benefitting from the thermally sensitive hydrogen bonds and the substantially reduced chain entanglements, the CPVA-QA elastomers show a high chain mobility upon temperature elevation, which facilitates ion transport within the CPVA-QA elastomers. Consequently, the CPVA-QA elastomer-based temperature sensors show an outstanding temperature resolution (0.05 °C), a fast response time over a wide temperature range, and a record-high thermosensitivity of 10.8% K−1. Importantly, the CPVA-QA sensors can be depolymerized under mild conditions to recover their original components in high purity and yields (>96%), enabling closed-loop recycling of the sensors.
期刊介绍:
CCS Chemistry, the flagship publication of the Chinese Chemical Society, stands as a leading international chemistry journal based in China. With a commitment to global outreach in both contributions and readership, the journal operates on a fully Open Access model, eliminating subscription fees for contributing authors. Issued monthly, all articles are published online promptly upon reaching final publishable form. Additionally, authors have the option to expedite the posting process through Immediate Online Accepted Article posting, making a PDF of their accepted article available online upon journal acceptance.