{"title":"揭开心脏隐藏敌人的面纱:基于心脏类器官芯片对聚苯乙烯纳米塑料诱发心脏毒性的动态观察","authors":"Tianyi Zhang, Sheng Yang, Yiling Ge, Lihong Yin, Yuepu Pu, Zhongze Gu, Zaozao Chen, Geyu Liang","doi":"10.1021/acsnano.4c13262","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to micro- and nanoplastics (MNPs) has been implicated in potential cardiotoxicity. However, in vitro models based on cardiomyocyte cell lines lack crucial cardiac characteristics, while interspecies differences in animal models compromise the reliability of the conclusions. In addition, current research has predominantly focused on single-time point exposures to MNPs, neglecting comparative analyses of cardiac injury across early and late stages. Moreover, there remains a large gap in understanding the susceptibility to MNPs under pathological conditions. To address these limitations, this study integrated cardiac organoids (COs) and organ-on-a-chip (OoC) technology to develop the cardiac organoid-on-a-chip (COoC), which was validated for cardiotoxicity evaluation through multiple dimensions. Based on COoC, we conducted a dynamic observation of the cardiac damage caused by short- and long-term exposure to polystyrene nanoplastics (PS-NPs). Oxidative stress, inflammation, disruption of calcium ion homeostasis, and mitochondrial dysfunction were confirmed as the potential mechanisms of PS-NP-induced cardiotoxicity and the crucial events in the early stages, while cardiac fibrosis emerged as a prominent feature in late stages. Notably, low-dose exposure exacerbated myocardial infarction symptoms under pathological states, despite no significant cardiotoxicity shown in healthy models. In conclusion, these findings further deepened our understanding of PS-NP-induced cardiotoxic effects and introduced a promising in vitro platform for assessing cardiotoxicity.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"31569-31585"},"PeriodicalIF":15.8000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unveiling the Heart's Hidden Enemy: Dynamic Insights into Polystyrene Nanoplastic-Induced Cardiotoxicity Based on Cardiac Organoid-on-a-Chip.\",\"authors\":\"Tianyi Zhang, Sheng Yang, Yiling Ge, Lihong Yin, Yuepu Pu, Zhongze Gu, Zaozao Chen, Geyu Liang\",\"doi\":\"10.1021/acsnano.4c13262\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exposure to micro- and nanoplastics (MNPs) has been implicated in potential cardiotoxicity. However, in vitro models based on cardiomyocyte cell lines lack crucial cardiac characteristics, while interspecies differences in animal models compromise the reliability of the conclusions. In addition, current research has predominantly focused on single-time point exposures to MNPs, neglecting comparative analyses of cardiac injury across early and late stages. Moreover, there remains a large gap in understanding the susceptibility to MNPs under pathological conditions. To address these limitations, this study integrated cardiac organoids (COs) and organ-on-a-chip (OoC) technology to develop the cardiac organoid-on-a-chip (COoC), which was validated for cardiotoxicity evaluation through multiple dimensions. Based on COoC, we conducted a dynamic observation of the cardiac damage caused by short- and long-term exposure to polystyrene nanoplastics (PS-NPs). Oxidative stress, inflammation, disruption of calcium ion homeostasis, and mitochondrial dysfunction were confirmed as the potential mechanisms of PS-NP-induced cardiotoxicity and the crucial events in the early stages, while cardiac fibrosis emerged as a prominent feature in late stages. Notably, low-dose exposure exacerbated myocardial infarction symptoms under pathological states, despite no significant cardiotoxicity shown in healthy models. In conclusion, these findings further deepened our understanding of PS-NP-induced cardiotoxic effects and introduced a promising in vitro platform for assessing cardiotoxicity.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\" \",\"pages\":\"31569-31585\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c13262\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c13262","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Unveiling the Heart's Hidden Enemy: Dynamic Insights into Polystyrene Nanoplastic-Induced Cardiotoxicity Based on Cardiac Organoid-on-a-Chip.
Exposure to micro- and nanoplastics (MNPs) has been implicated in potential cardiotoxicity. However, in vitro models based on cardiomyocyte cell lines lack crucial cardiac characteristics, while interspecies differences in animal models compromise the reliability of the conclusions. In addition, current research has predominantly focused on single-time point exposures to MNPs, neglecting comparative analyses of cardiac injury across early and late stages. Moreover, there remains a large gap in understanding the susceptibility to MNPs under pathological conditions. To address these limitations, this study integrated cardiac organoids (COs) and organ-on-a-chip (OoC) technology to develop the cardiac organoid-on-a-chip (COoC), which was validated for cardiotoxicity evaluation through multiple dimensions. Based on COoC, we conducted a dynamic observation of the cardiac damage caused by short- and long-term exposure to polystyrene nanoplastics (PS-NPs). Oxidative stress, inflammation, disruption of calcium ion homeostasis, and mitochondrial dysfunction were confirmed as the potential mechanisms of PS-NP-induced cardiotoxicity and the crucial events in the early stages, while cardiac fibrosis emerged as a prominent feature in late stages. Notably, low-dose exposure exacerbated myocardial infarction symptoms under pathological states, despite no significant cardiotoxicity shown in healthy models. In conclusion, these findings further deepened our understanding of PS-NP-induced cardiotoxic effects and introduced a promising in vitro platform for assessing cardiotoxicity.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.